期刊文献+

需求变动视角下虚拟养老服务人员调度研究

Research on Virtual Elderly Care Service Personnel Scheduling from the Perspective of Demand Change
下载PDF
导出
摘要 针对虚拟养老服务人员实时调度问题,基于需求变动视角分别构建成本最优的调度优化模型和扰动最小的干扰管理模型,通过改进灰狼优化算法的位置更新公式,引入非支配排序设计多目标遗传灰狼优化算法。通过求解标准算例对比算法求解指标验证了算法的优越性,通过设计并求解算例验证模型的可行性。研究结果表明:相较于重调度法,干扰管理模型能够显著降低干扰事件对各主体的影响,生成更为丰富的决策集合,更加适合虚拟养老服务人员的调度问题。 In order to solve the real-time scheduling problem of virtual eldly service personnel,this paper constructs a cost-optimal scheduling optimization model and a disturbance-minimization management model based on the perspective of demand variation,by improving the location update formula of grey wolf optimization algorithm,the non-dominated ranking design multi-objective genetic grey wolf optimization algorithm is introduced.The superiority of the algorithm is verified by solving the comparison index of the standard example,and the feasibility of the model is verified by designing and solving the example.The results show that,compared with the rescheduling method,the disturbance management model can significantly reduce the influence of disturbance events on the agents,generate more abundant decision sets,and is more suitable for the scheduling problem of virtual elderly service personnel.
作者 廖阳 孟豪南 李迎峰 李思卿 LIAO Yang;MENG Haonan;LI Yingfeng;Li Siqing(School of Management,Xi’an University of Architecture and Technology,Xi’an 710055,China;Research Center of Green Development and Mechanism Innovation of Real Estate Industry in Shaanxi Province,Xi’an 710055,China;School of Economics and Management,Xi’an Shiyou University,Xi’an 710065,China)
出处 《复杂系统与复杂性科学》 CAS CSCD 北大核心 2024年第3期144-153,共10页 Complex Systems and Complexity Science
基金 国家自然科学基金(41877527) 陕西省社会科学基金年度项目(2019S039) 新时代中国老龄产业中长期发展战略第一批子课题“中国老龄宜居产业空间布局”。
关键词 虚拟养老 调度问题 干扰管理 前景理论 遗传灰狼优化算法 virtual pension scheduling problem interference management prospect theory genetic-grey wolf optimization algorithm
  • 相关文献

参考文献5

二级参考文献53

  • 1潘震东,唐加福,韩毅.带货物权重的车辆路径问题及遗传算法[J].管理科学学报,2007,10(3):23-29. 被引量:29
  • 2Dantzig G B,Ramser J H.The Truck Dispatching Problem[J].Management Science,1959,6:80-91.
  • 3Laporte G.What you should know about the vehicle routing problem[J].Naval Research Logistics,2007,54:811-819.
  • 4Br(a)ysy O,Gendreau M.Vehicle Routing Problem,Part I:Route Construction and Local Search Algorithms[J].Transportation Science,2005,39(1):104-118.
  • 5Br(a)ysy O,Gendreau M.Vehicle Routing Problem with Time Windows,Part Ⅱ:Metaheuristics[J].Transportation Science,2005,39(1):119-139.
  • 6Gendreau M,Tarantilis C D.Solving large-scale vehicle routing problems with time windows:the state-of-the-art[R].Technical report 2010-04.CIRRELT,Montreal,QC,Canada,2010.
  • 7Mladenovic N,Hansen P.Variable neighborhood search[J].Computers and Operations Research,1997,24:1097-1100.
  • 8Ganesh K,Narendran T T.CLOVES:A Cluster-and-search Heuristic to Solve the Vehicle Routing Problem with Delivery and Pick-up[J].European Journal of Operational Research,2007,178(3):699-717.
  • 9Ostertag L,Doerner K F,Hart R F.A Variable Neighborhood Search Integrated in the POPMUSIC Framework for Solving Large Scale Vehicle Routing Problems[C] //Proceedings of the 5th International Workshop on Hybrid Meta-heuristics,2008.Málaga,Spain,2008:29-42.
  • 10Vidal T,Crainic TG,Gendreau M,et al.A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time-windows[J].Computers & Operations Research,2013,40:475-489.

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部