摘要
为提高支持向量机在变压器故障诊断的准确率,提出了一种多策略改进蜉蝣算法优化支持向量机的故障诊断方法,并通过利用螺旋函数、正余弦自适应权重优化改进后的蜉蝣算法,得到支持向量的最佳参数c和g。通过3个测试函数对改进后的算法进行仿真对比,实验表明改进后的算法具有较高的寻优精度和较快的收敛速度。将提出的故障诊断方法运用到实际DGA故障数据中,结果表明该方法能有效提高变压器故障诊断的准确率和缩短运行时间。
In order to improve the accuracy of support vector machine in transformer fault diagnosis,a multi-strategy improved mayfly algorithm is proposed to optimize the support vector machine for fault diagnosis,and the optimal parameters of support vectors c and g are obtained by optimizing the improved may fly algorithm by using the spiral function,positive cosine adaptive weights.The improved algorithm is simulated and compared with three test functions,and the experiments show that the improved algorithm has high optimization accuracy and faster convergence speed.The fault diagnosis method proposed in this paper is applied to the actual DGA fault data,and the results show that the method can effectively improve the accuracy of transformer fault diagnosis and shorten the operation time.
作者
郑颖春
朱玫
ZHENG Yingchun;ZHU Mei(College of Science,Xi’an University of Science and Technology,Xi’an 710054,China)
出处
《河南科技大学学报(自然科学版)》
CAS
北大核心
2024年第5期86-92,M0007,M0008,共9页
Journal of Henan University of Science And Technology:Natural Science
基金
国家自然科学基金青年项目(12001420)。
关键词
故障诊断
支持向量机
蜉蝣算法
螺旋函数
折射反向学习
fault diagnosis
support vector machine
mayfly algorithm
spiral function
refracted opposition-based learning