期刊文献+

基于自适应滑动窗均值偏移算法的雷达信号分选

Radar signal sorting based on an auto-mean-shift algorithm
下载PDF
导出
摘要 为了应对复杂体制雷达信号分选的要求,提升信号分选的速度和准确性,解决传统信号分选方法的弊端,本文将均值偏移聚类算法引入雷达信号分选,通过改进算法引入滑动窗的自适应更新摆脱了传统分选方法对预设参数的依赖。实验结果表明:自适应滑动窗均值偏移算法在分选准确性和速度上综合表现优于用于对比的传统分选方法,对不同密度的雷达数据集和在脉冲丢失的情况下都可实现较好的分选效果,对捷变频雷达的分选效果良好,并可推知对其他类似体制的雷达均有良好分选效果。本文研究成果可应用于大量数据的多体制雷达的分选优化。 To address the complex requirements of institutional radar signal sorting,improve the speed and accuracy of signal sorting,and overcome the drawbacks of traditional methods,this paper introduces the mean-shift clustering algorithm into radar signal sorting.Improving the algorithm with adaptive updating of the sliding window eliminates the dependence on preset parameters typical of traditional sorting methods.Experimental results show that the auto-mean-shift algorithm outperforms the traditional sorting method in terms of sorting accuracy and speed.It achieves better sorting performance for radar data sets with different densities and under conditions of pulse loss.Additionally,it performs well with agile frequency radars,suggesting its effectiveness for other similar radar systems.The research results of this paper suggest that this method can be applied to optimize the sorting optimization of multi-regime radar systems handling large volumes of data.
作者 郭立民 陈昊翔 于飒宁 GUO Limin;CHEN Haoxiang;YU Saning(College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China)
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第11期2266-2273,共8页 Journal of Harbin Engineering University
关键词 雷达信号分选 脉冲描述字 机器学习 聚类算法 均值偏移聚类 捷变频雷达 K-MEANS算法 DBSCAN算法 radar signal sorting pulse description word machine learning clustering algorithm mean-shift clustering agile frequency radar K-Means algorithm DBSCAN algorithm
  • 相关文献

参考文献8

二级参考文献52

  • 1关胜晓.机器视觉及其应用发展[J].自动化博览,2005,22(3):88-92. 被引量:23
  • 2Wang Jun-qiu,Yagi Yasushi.Discriminative mean shifttracking with auxiliary particles[C] ∥The 8th AsianConference on Computer Vision(ACCV2007),Tokyo,Japan,2007.
  • 3Shan Caifeng,Tan Tieniu,Wei Yu-cheng.Real-time hand tracking using a mean-shift embeddedparticle filter[J].Pattern Recognition,2007,110(7):175-197.
  • 4Zhao J,Li L.Human motion reconstruction from mo-nocular images using genetic algorithms[J].ComputerAnima Computing,2004,22(5):429-441.
  • 5Casella G,Berger R L.Statistical Inference(统计推断)[M].2版.北京:机械工业出版社,2002.
  • 6Pfister H,Lorensen B,Bajaj C,et al.The transfer function bakeoff[J].IEEE Computer Graphics and Applications,2001,21(3):16-22.
  • 7He T S,Hong L C,Kaufman A,et al.Generation of transfer functions with stochastic search techniques[A].Proceedings of the IEEE Visualization Conference[C].Piscataway,NJ,USA:IEEE,1996.227-234.
  • 8Bajaj C L,Pascucci V,Schikore D R.The contour spectrum[A].Proceedings of the IEEE Visualization Conference[C].Piscataway,NJ,USA:IEEE,1997.167-173.
  • 9Kniss J,Kindlmann G,Hansen C.Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets[A].Proceedings of the IEEE Visualization Conference[C].Piscataway,NJ,USA:IEEE,2001.255-262.
  • 10Hauser H,Mroz L,Bischi G I,et al.Two-level volume rendering[J].IEEE Transactions on Visualization and Computer Graphics,2001,7(3):242-252.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部