期刊文献+

Developing a highly scalable synthetic strategy for 5-amino-4-nitrobenzo[1,2-c:3,4-c']bis([1,2,5]oxadiazole)1,b-dioxide(CL-18)and investigating the influence of crystal engineering and positional isomerization on its safety and laser ignition performance

下载PDF
导出
摘要 5-amino-4-nitrobenzo[1,2-c:3,4-c']bis([1,2,5]oxadiazole)1,6-dioxide(CL-18)exhibits significant potential as an initiating explosive.However,its current synthesis process remains non-scalable due to low yields and safety risks.In this study,we have developed a simple and safe synthetic route for CL-18.It was synthesized from 3,5-dihaloanisole in a four-step reaction with an overall yield exceeding 60%,surpassing all reported yields in the literature.Subsequently,recrystallization of CL-18 was successfully achieved by carefully selecting appropriate solvents and antisolvents to reduce its mechanical sensitivity.Ultimately,when DMF-ethanol was employed as the recrystallization solvent system,satisfactory product yield(>90%)and reduced mechanical sensitivity(IS=15 J;FS=216 N)were obtained.Additionally,CL-18 is derived from the rearrangement of oxygen atoms on i-CL-18 furoxan,and a comparative analysis of their physicochemical properties was conducted.The thermal stability of both compounds is similar,with onset decomposition temperatures recorded at 186 and 182℃respectively.Similarly,they exhibit 5 s breaking point temperatures of 236 and 237℃.Additionally,we present novel insights into the positional-isomerization-laser-ignition performance of CL-18 and its isomer i-CL-18 using laser irradiation for the first time.Remarkably,our findings demonstrate that i-CL-18 exhibits enhanced laser sensitivity,as it can be directly ignited by a 1064 nm wavelength laser,whereas CL-18 lacks this characteristic.
出处 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第11期13-21,共9页 Defence Technology
基金 support from the National Natural Science Foundation of China(Grant No.22175160) the Science Challenge Project(Grant No.TZ2018004)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部