期刊文献+

Sufficient variable selection of high dimensional nonparametric nonlinear systems based on Fourier spectrum of density-weighted derivative

下载PDF
导出
摘要 The variable selection of high dimensional nonparametric nonlinear systems aims to select the contributing variables or to eliminate the redundant variables.For a high dimensional nonparametric nonlinear system,however,identifying whether a variable contributes or not is not easy.Therefore,based on the Fourier spectrum of densityweighted derivative,one novel variable selection approach is developed,which does not suffer from the dimensionality curse and improves the identification accuracy.Furthermore,a necessary and sufficient condition for testing a variable whether it contributes or not is provided.The proposed approach does not require strong assumptions on the distribution,such as elliptical distribution.The simulation study verifies the effectiveness of the novel variable selection algorithm.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第11期2011-2022,共12页 应用数学和力学(英文版)
基金 Project supported by the National Key Research and Development Program of China(No.2021YFB3400700) the National Natural Science Foundation of China(Nos.12422201,12072188,12121002,and 12372017)。
  • 相关文献

参考文献2

二级参考文献5

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部