期刊文献+

All-fiber acousto-optic modulator based on a cladding-etched optical fiber for active mode-locking 被引量:1

All-fiber acousto-optic modulator based on a cladding-etched optical fiber for active mode-locking
原文传递
导出
摘要 An all-fiber acousto-optic modulator(AOM), which features a compact structure and a low-driving voltage, is experimentally demonstrated for the active mode-locking of a fiber laser. The proposed AOM is based on the short length of the cladding-etched fiber, the ends of which are fixed on a slide glass. On top of the cladding-etched fiber, a piezoelectric transducer was overlaid. A chemical wet-etching technique, which is based on a mixed solution of NH_4F and (NH_4)2SO_4, is used to reduce the fiber diameter down to ~25 μm, and the length of the etched section is only 0.5 cm. The fabricated device exhibited a modulation depth of 73.10% at an acoustic frequency of 918.9 kHz and a peak-to-peak electrical voltage of 10 V, while a laser beam was coupled at 1560 nm.By using the prepared AOM within an erbium-doped-fiber ring cavity, the mode-locked pulses with a temporalwidth of 2.66 ps were readily obtained at a repetition rate of 1.838 MHz. An all-fiber acousto-optic modulator(AOM), which features a compact structure and a low-driving voltage, is experimentally demonstrated for the active mode-locking of a fiber laser. The proposed AOM is based on the short length of the cladding-etched fiber, the ends of which are fixed on a slide glass. On top of the cladding-etched fiber, a piezoelectric transducer was overlaid. A chemical wet-etching technique, which is based on a mixed solution of NH_4F and (NH_4)2SO_4, is used to reduce the fiber diameter down to ~25 μm, and the length of the etched section is only 0.5 cm. The fabricated device exhibited a modulation depth of 73.10% at an acoustic frequency of 918.9 kHz and a peak-to-peak electrical voltage of 10 V, while a laser beam was coupled at 1560 nm.By using the prepared AOM within an erbium-doped-fiber ring cavity, the mode-locked pulses with a temporalwidth of 2.66 ps were readily obtained at a repetition rate of 1.838 MHz.
出处 《Photonics Research》 SCIE EI 2017年第5期391-395,共5页 光子学研究(英文版)
基金 National Research Foundation of Korea(NRF)(2015R1A2A2A04006979,2015R1A2A2A11000907) Institute for Information and Communications Technology Promotion(IITP-2017-2015-0-00385)
  • 相关文献

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部