期刊文献+

NR4A1 silencing alleviates high-glucose-stimulated HK-2 cells pyroptosis and fibrosis via hindering NLRP3 activation and PI3K/AKT pathway

下载PDF
导出
摘要 BACKGROUND The pathophysiology of diabetic kidney disease(DKD)is complex.Interfering with the processes of pyroptosis and fibrosis is an effective strategy for slowing DKD progression.Previous studies have revealed that nuclear receptor subfamily 4 group A member 1(NR4A1)may serve as a novel pathogenic element in DKD;however,the specific mechanism by which it contributes to pyroptosis and fibrosis in DKD is unknown.AIM To investigate the role of NR4A1 in renal pyroptosis and fibrosis in DKD and possible molecular mechanisms.METHODS Streptozotocin 60 mg/kg was injected intraperitoneally to establish a rat model of DKD.Typically,45 mmol/L glucose[high glucose(HG)]was used to activate HK-2 cells to mimic the DKD model in vitro.HK-2 cells were transfected with NR4A1 siRNA to silence NR4A1.RESULTS NR4A1 was elevated in renal tissues of DKD rats and HG-stimulated HK-2 cells.Concurrently,NOD-like receptor protein 3(NLRP3)and phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)pathways were triggered,and pyroptosis and expression of fibrosis-linked elements was increased in vivo and in vitro.These alterations were significantly reversed via NR4A1 silencing.CONCLUSION Inhibition of NR4A1 mitigated pyroptosis and fibrosis via suppressing NLRP3 activation and the PI3K/AKT pathway in HG-activated HK-2 cells.
出处 《World Journal of Diabetes》 2025年第3期203-215,共13页 世界糖尿病杂志(英文)
基金 Supported by Research Fund for Academician Lin He New Medicine,No.JYHL2022FMS02.
  • 引文网络
  • 相关文献
;
使用帮助 返回顶部