期刊文献+

基于深度学习的ADHD儿童和正常儿童脑电信号分类研究 被引量:1

Study of EEG signal classification based on deep learning for ADHD children and normal children
下载PDF
导出
摘要 针对注意缺陷多动障碍(attention deficit hyperactivity disorder,ADHD)儿童和正常儿童的分类问题,实验采用经典干扰控制任务范式对两类儿童的事件相关电位(event-related potential,ERP)进行了研究,旨在通过ERP特征实现其分类。实验首次使用长短期记忆(long-short term memory,LSTM)方法分析两类儿童前额叶与顶枕叶脑区最佳电极(p <0. 05)潜伏期(200~450 ms)的脑电信号,并自动学习和分类其ERP特征。相比常规分类方法,LSTM方法的分类率略高,可达95. 78%。研究结果表明LSTM方法有助于ADHD儿童脑电信号的分类,为ADHD儿童个体诊断技术提供了一种新思路。 To solve the classification problem of attention deficit hyperactivity disorder(ADHD) children and normal children,it the experiment studied the event-related potential of them with the classical interference control task experimental paradigm in order to distinguish two categories of children through the ERP characteristics. In the experiment,firstly it used the long short-term memory(LSTM) method to analyze the EEG signals of two kinds of children’s the optimal electrodes(p <0. 05) in the frontal and parietal-occipital regions during the latency(200 ~ 450 ms),learn its characteristics automatically and realize classification. The classification rate was slightly higher than the conventional method,up to 95. 78%. The results show that the LSTM method is helpful to classify the EEG signals of children with ADHD,which provides a new idea for the individual diagnosis of ADHD children.
作者 田博帆 严瀚莹 王苏弘 邹凌 Tian Bofan;Yan Hanying;Wang Suhong;Zou Ling(School of Information Science & Engineering,Changzhou University,Changzhou Jiangsu 213164,China;Changzhou Key Laboratory of Biomedical Information Technology,Changzhou Jiangsu 213164,China;Brain Science Research Center,The Third Affiliated Hospital of Soochow University,Changzhou Jiangsu 213003,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第2期347-350,共4页 Application Research of Computers
基金 江苏省科技厅社发发展项目(BE2018638) 常州市科技项目(CE20175043) 江苏省"333工程"人才项目
关键词 干扰控制任务实验 注意缺陷多动障碍 长短期记忆网络 interference control task experiment ADHD LSTM
  • 相关文献

参考文献1

二级参考文献18

  • 1ROBERT L S. American psychiatry association diagnostic and statistical manual of mental disorders (DSM-IV-TR) [M]. Washington D. C. : American Psychiatry Press, 2001: 1-624.
  • 2KLEIN R G, MANNUZZA S, OLAZAGASTI M A, et al. Clinical and functional outcome of childhood attention-deficit/ hyperactivity disorder 33 years later [J]. Arch Gen Psychia- try, 2012, 69(12): 1295-1303.
  • 3SHAW P, GILL/AM M, LIVERPOOL M, et al. Cortical de- velopment in typically developing children with symptoms of hyperactivity and impulsivity: support for a dimensional view of attention deficit hyperactivity disorder [J].Am J Psychia- try, 2011, 168(2): 143-151.
  • 4GONZA.LEZ J J, MENDEZ L D, MANAS S, et al. Perform anee analysis of univariate and multivariate EEG measure ments in the diagnosis of ADHD [J]. Clin Neurophysiol 2013, 124(6): 1139-1150.
  • 5RUBIA K, HALARI R, CUBILLO A, et al. Methylpheni- date normalizes fronto-striatal underaetivation during interfer- ence inhibition in medication-naive boys with attention-deficit hyperactivity disorder [J]. Neuropsyehopharmacology, 2011, 36(8) : 1575-1586.
  • 6BARKLEY R A. Behavioral inhibition, sustained attention, and executive funetions~ constructing a unifying theory of ADHD[J]. PsycholBull, 1997, 121(1): 65-94.
  • 7LIU Xun, BANICH M T, JACOBSON B L, et al. Common and distinct neural substrates of attentional control in an inte- grated Simon and spatial Stroop task as assessed by event-re- lated fMRI[J]. Neuroimage, 2004, 22(3): 1097-1106.
  • 8DEREFINKO K J, ADAMS Z W, MILICH R, et al. Response style differences in the inattentive and combined subtypes of attention-deficit/hyperactivity disorder [J]. J Abnorm Child Psychol, 2008, 36(5): 745-758.
  • 9SIUI.Y S, I.I Yan, WEN P P. Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classi fication in EEG based brain-computer interface [J]. Cornput Methods Programs Biomed, 2014, 113(3): 767-780.
  • 10SIUI.Y S, LI Yan. Designing a robust feature extraction method based on optimum allocation and principal component analysis for epileptic EEG signal classification [J].Comput Methods Programs Biomed, 2015, 119(1): 29-42.

共引文献2

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部