期刊文献+

基于多层特征融合可调监督函数卷积神经网络的人脸性别识别 被引量:15

Face gender recognition based on multi-layer feature fusion convolution neural network with adjustable supervisory function
下载PDF
导出
摘要 为了进一步提高性别识别的准确率,提出了一种基于多层特征融合与可调监督函数机制结合的卷积神经网络(L-MFCNN)模型,并将之用于人脸性别识别。与传统卷积神经网络(CNN)不同,L-MFCNN将多个浅层中间卷积层特征输出与最后卷积层特征输出相结合,融合多层卷积层的特征,不仅利用了深层卷积的整体语义信息,还考虑了浅层卷积的细节局部纹理信息,使得性别识别更加准确。此外L-MFCNN还引入具有可调目标监督函数机制的large-margin softmax loss作为输出层,利用其调节不同的间隔(margin)的机制来有效引导深层卷积网络学习,使得同种性别间的类内间距更小,不同性别间的类间距更大,获得更好的性别识别效果。在多个人脸数据集上的性别识别实验结果表明,L-MFCNN的识别准确率要高于其他传统的卷积网络模型。L-MFCNN模型也为将来的人脸性别识别研究提供了新的思路与方向。 In order to further improve the accuracy of gender recognition,this paper proposed the convolution neural network model based on multi-layer feature fusion with adjustable supervisory function,L-MFCNN,then used it for face gender recognition.Unlike the traditional convolution neural network,L-MFCNN combined the output of multiple shallow convolution layers with the final convolution layer output.Fusion the characteristics of multi-layer convolutions,not only used the high-level semantic information,but also considered the bottom of the details of the texture information,making the face gender recognition more accuracy.While using the large-margin softmax loss could adjust the margin function,it could explicitly encourages the same gender intra-class compactness and the different gender inter-class separability to get better face gender recognition.The face gender recognition experiment data on multiple face data sets show that the accuracy of L-MFCNN is higher than that of traditional convolution network.Besides,L-MFCNN also provides the new ideas and directions for the future gender recognition of face.
作者 石学超 周亚同 池越 Shi Xuechao;Zhou Yatong;Chi Yue(Tianjin Key Laboratory of Electronic Materials&Devices,School of Electronics&Information Engineering,Hebei University of Technology,Tianjin 300401,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第3期940-944,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61401307) 河北省科学技术研究与发展项目(11213565) 河北省引进留学人员资助项目(CL201707)
关键词 人脸性别识别 多层特征融合 卷积神经网络 深度学习 face gender recognition multi-layer feature fusion convolution neural network(CNN) deep learning
  • 相关文献

参考文献3

二级参考文献42

  • 1刘遵雄,马汝成.基于特征脸和LS-SVM分类器的人脸性别分类[J].华东交通大学学报,2007,24(5):85-88. 被引量:7
  • 2LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
  • 3BOUVRIE J.Notes on convolutional neural networks[J/OL].[2012-04-03].http://www.docin.com.
  • 4SIMARD P Y,STEINKRAUS D,PLATT J C.Best practices for convolutional neural networks applied to visual document analysis[C]//2013 12th International Conference on Document Analysis and Recognition.[S.l.]:IEEE Computer Society,2003,2:958-961.
  • 5TIVIVE F H C,BOUZERDOUM A.A new class of convolutional neural networks(SICo NNets)and their application of face detection[C]//2003 Proceedings of the International Joint Conference on Neural Networks.[S.l.]:IEEE,2003,3:2157-2162.
  • 6SUKITTANON S,SURENDRAN A C,PLATT J C,et al.Convolutional networks for speech detection[C]//8th International Conference on Spoken Language Processing.Jeju Island,Korea:INTERSPEECH,2004:11-14.
  • 7CHEN Y N,HAN C C,WANG C T,et al.The application of a convolution neural network on face and license plate detection[C]//2006.ICPR 2006.18th International Conference on Pattern Recognition.[S.l.]:IEEE,2006,3:552-555.
  • 8LAUER F,SUEN C Y,BLOCH G.A trainable feature extractor for handwritten digit recognition[J].Pattern Recognition,2007,40(6):1816-1824.
  • 9JI S,XU W,YANG M,et al.3D convolutional neural networks for human action recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(1):221-231.
  • 10SUN Y,WANG X,TANG X.Deep convolutional network cascade for facial point detection[C]//2013 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).[S.l.]:IEEE,2013:3476-3483.

共引文献69

同被引文献136

引证文献15

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部