期刊文献+

复杂过程的智能集成故障诊断模型研究 被引量:1

The Intelligent Integrated Model Research for Complex Process Fault Diagnosis
下载PDF
导出
摘要 由于复杂过程与一般工业过程的本质区别,使得传统的依赖对象精确数学模型的故障诊断方法难以取得令人满意的结果。而智能技术具有无需建立对象精确模型的优势,并且可以充分利用人类专家的经验知识,因此利用智能故障诊断模型研究适合复杂过程实现的故障诊断技术既是必要的也是可行的。通过比较目前研究较多的智能故障诊断模型,提出基于模糊逻辑、神经网络与专家系统的智能集成故障诊断模型,以便有效地解决复杂过程的故障诊断问题,并具体分析了模型组成机理、结构和网络学习算法,从而为复杂过程的故障诊断技术研究提供了新的途径。 Owing to the essential differences of complex process with usual industrial process,it is difficult to get the satisfied results by the traditional fault diagnosis methods which depend on the exact mathematic model of the objects.However,the intelligent technology does not need to construct the exact mathematic model of the objects and can fully take advantage of human experts' experience,so it is not only necessary but also feasible to study fault diagnosis techniques which adapt to complex pro cess by using the intelligent fault diagnosis model.The intelligent integrated fault diagnosis model based on fuzzy logic,neural network and expert system is suggested by comparing the present general intelligent fault diagnosis models,which can effectively resolve the fault diagnosis problems of complex process.The compositive mechanism of model,construction and learning algorithm of network are analyzed in detail.Thereby a new approach of fault diagnosis technology research for complex process is proposed.
出处 《计算机工程与应用》 CSCD 北大核心 2003年第9期51-54,57,共5页 Computer Engineering and Applications
基金 国家计委高技术产业化计划"岭南铅锌集团铅锌生产过程综合自动化集成技术产业化示范工程"
关键词 复杂过程 智能集成故障诊断模型 模糊逻辑 神经网络 complex process,intelligent integrated model for fault diagnosis,fuzzy logic,neural network
  • 引文网络
  • 相关文献

参考文献1

二级参考文献2

共引文献7

同被引文献7

  • 1Basir I,Namuduri K R,Pendse R.A Light Weight Dynamic Rate Control Scheme for Video Transmission over IP Network[J].Pattern Recognition Letters ,2004;25(7) :817~827
  • 2Farshchian M,Cho S,Pearlman W A.Optimal Error Protection for Real-Time Image and Video Transmission[J].IEEE Signal Processing Letters, 2004; 11 (10): 780~783
  • 3Yoo S J,Kwark K S,Kim M.Predictive and Measurement-Based Dynamic Resource Management and Qos Control for Videos[J].Computer Connnunications, 2003; 26 ( 14 ): 1651~1661
  • 4Rikli N E.Modeling Techniques for VBR Video:Feasiblity and Limitations[J].Peffonnance Evaluation,2004;57(1) :57~68
  • 5Yao L.Real-Time VBR Video Traffic Prediction for Dynamic Bandwith Allocation[J].IEEE Trans. Systems , Man and Cybernetics-Part C:Applications and Reviews ,2004;34(1) :32~47
  • 6Yoo S J.Efficient Traffic Prediction Scheme for Real-Time VBR MPEG Video Transmission Over High-Speed Networks[J].IEEE Trans Broadcasting,2002 ;48 ( 1 ): 10~18
  • 7Chan W S,Cheung S H,Wu K H.Multiple Forecasts with Autoregressive Time Series Models:Case Studies[J].Mathernatics and Computers in Simulation,2004;64(3-4):421~430

引证文献1

;
使用帮助 返回顶部