摘要
The computational methods of a typical dynamic mathematical model that can describe the differential element and the inertial element for the system simulation are researched. The stability of numerical solutions of the dynamic mathematical model is researched. By means of theoretical analysis, the error formulas, the error sign criteria and the error relationship criterion of the implicit Euler method and the trapezoidal method are given, the dynamic factor affecting the computational accuracy has been found, the formula and the methods of computing the dynamic factor are given. The computational accuracy of the dynamic mathematical model like this can be improved by use of the dynamic factor.
The computational methods of a typical dynamic mathematical model that can describe the differential element and the inertial element for the system simulation are researched. The stability of numerical solutions of the dynamic mathematical model is researched. By means of theoretical analysis, the error formulas, the error sign criteria and the error relationship criterion of the implicit Euler method and the trapezoidal method are given, the dynamic factor affecting the computational accuracy has been found, the formula and the methods of computing the dynamic factor are given. The computational accuracy of the dynamic mathematical model like this can be improved by use of the dynamic factor.