On the Existence of Periodic Solutions of a Class Nonlinear Differential Systems
被引量:1
一类非线性微分方程系统周期解的性(英文)
摘要
One method to show the existence of ω-periodic system is given. This method is based on the ultimately boundedness of the solution of the systems. By using comparing theorem and discussing some one dimensional equations the main results are obtained.
参考文献9
-
1RESSIG R,SANSONE G,CONTI R.Nonlinear Equation of Higher Order[M]. Leyden:Noordhoff Internatial Publishing,1974.
-
2ZHANG Di,ZHAO Xiao-qing,GAO Zhan-hai. The theory and its application of periodicsolutions in space[J]. J Nanjing University,1987,(special volume):37-49.
-
3ZHAO Xiao-qing. On the periodic solutions of nonautonomous systems[J]. Acta MathAppl,1988,11(1):30-39.
-
4LI Li-ming,WANG Lian. On the periodic solutions of a class higher dimensionalnonautonomous system[J]. Acta Math App,1989,12(2):272-280.
-
5XIANG Zi-gui,WANG Lian. Existence and uniqueness of periodic solutions of higherdimensioal systems[J]. Acta Math Sinica,1995,38(6):789-796.
-
6LI Shen-lin,HUANG Li-hong. On the periodic solutions of a Class higher dimensionalnonautonomous systems[J]. Acta Math App,1996,19(1):115-122.
-
7ROSEAU M. Equations Differentielles[M]. Shanghai:Shanghai Science and TechnologyPublishing House,1981.
-
8MORALS M,MCKAY D. Biochemical oscillations in controlled systems[J]. BiophysJ,1967,7:621-625.
-
9HSU S B,LI Yen-sheng,WALTMAN P. Competition in the presence of a lethal externalinhibitor[J]. Math Biosci,2000,167:177-190.
-
1周杰荣.一维微分方程最大值原理[J].德州学院学报,2013,29(4):20-23.
-
2CHENNanxian,LIUGang.A new solution to inverse fermion system problem[J].Progress in Natural Science:Materials International,2003,13(6):407-411.
-
3章毅,王平安,周明天.用神经网络计算矩阵特征值与特征向量[J].计算机学报,2000,23(1):71-76. 被引量:13
-
4徐军,张春凤,钟守铭.一类神经网络模型的解及其渐近性态[J].电子科技大学学报,2002,31(5):534-538.
-
5肖炜麟,张卫国,徐维军.分数布朗运动下几何平均亚式权证的定价[J].数学的实践与认识,2010,40(21):1-7. 被引量:2