期刊文献+

侧链型偶氮聚合物液晶在不同温度条件下的光致取向 被引量:20

PHOTOINDUCED ORIENTATION OF AZOBENZENE LIQUID CRYSTAL POLYMER UNDER IRRADIATION AT DIFFERENT TEMPERATURE
下载PDF
导出
摘要 在高于和低于玻璃化转变温度 (Tg)的温度范围内 ,研究了聚甲基丙烯酸 ( 6 [4 ( 4 氰基偶氮苯 )苯氧基 ]己酯 ) (Poly( 6 [4 ( 4 cyanophenylazo)phenoxy]hexylmethacrylate) (PM6ABCN) )聚合物膜的光致取向行为 .实验结果表明 ,在温度低于Tg 时 ,实验温度对取向速率没有影响 ;高于Tg 温度时 ,取向的速率随温度升高而变大 ,取向过程的表观活化能为 3 2 76kJ mol.通过对Tg 温度以下的光致取向进行分析 ,对光致取向过程提出了一个新的微相模型 ,微相内的温度能够达到Tg 以上 ,而实验中控制的样品宏观温度不变 ;高于Tg 温度时的光致取向过程受到宏观温度的控制 ,其表观活化能远远小于热致的各向同性相I(Isotropicphase,I)到向列相N(Nematicphase,N)相转变表观活化能 ( 3 40 2kJ mol) 。 A simple casting film of Poly (6-[4-(4-cyanophenylazo) phenoxy] hexyl metbacrylate) (PM6ABCN) was made on an untreated surface of a glass substrate and adopted as a typical sample to study photoinduced orientation of azobenzene liquid crystalline side chain homopolymers. Photoinduced orientation process of the sample was examined. A novel domain model was proposed to give a qualitative analysis of the photoinduced orientation below T-g. It was found that the experimental temperature had no effect on the rate of orientation, and within the domain the temperature higher than T-g was resulted from radiationless decay of absorbed light energy, and the orientation behavior of microscopic domains was identical with that of the macroscopic sample above T-g. An apparent activation energy of the orientation above T-g was found to be 32.76 kJ/mol. It means that this orientation process has a lower temperature dependence than that of the thermal I-N phase transition (340.2 kJ/mol).
出处 《高分子学报》 SCIE CAS CSCD 北大核心 2003年第2期256-260,共5页 Acta Polymerica Sinica
基金 国家自然科学基金资助项目 (基金号 5 0 0 2 5 3 0 9) 国家科技部重大基础研究项目 (项目号G19990 3 3 0 )
关键词 侧链型偶氮聚合物 液晶 玻璃化转变温度 光致取向 聚甲基丙烯酸(6-[4-(4-氰基偶氮苯)苯氧基]己酯) photoinduced orientation azobenzene liquid crystalline polymers glass transition temperature
  • 相关文献

参考文献1

二级参考文献21

  • 1[1]Eich M,Wendorff J H,Reck B,Ringsdorf H.Makromol Chem Rapid Commun,1987,8:59~63
  • 2[2]Natansohn A,Rochon P,Gosselin J,Xie S.Macromolecules,1992,25:2268~2273
  • 3[3]Ho M S,Natansohn A,Rochon P.Macromolecules,1996,29:44~49
  • 4[4]Geue T,Stumpe J,Mobius G,Pietsch U,Schuster A,Ringsdorf H.Mol Cryst Liq Cryst,1994,246:405~408
  • 5[5]Geue,T,Ziegler A,Stumpe J.Macromolecules,1997,30:5729~5738
  • 6[6]Hvilsted S,Andruzzi F,Kulinna C,Siesler,H W,Ramanujam,P S.Macromolecules,1992,25:2215~2220
  • 7[7]Wu Y,Demachi Y,Tsutsumi O,Kanazawa A,Shiono T,Ikeda,T. Macromolecules,1998,31:349~354
  • 8[8]Lasker L,Fischer T,Stumpe J,Kostromin S,Ivanov S,Shibaev V,Ruhmann R.Mol Cryst Liq Cryst,1994,253:1~10
  • 9[9]Schonhoff M,Mertesdorf M,Losche M.J Phys Chem,1996,100:7558~7565
  • 10[10]Durbin S D,Arakelian S M,Shen Y R.Phys Rev Lett,1981,47:1411~1414

共引文献9

同被引文献224

引证文献20

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部