期刊文献+

作物品种区域试验中品种均值估计的模型和方法——算术平均值、加权最小二乘估值和BLUP的比较 被引量:11

Models and Methods for Estimating Variety Means in Regional Crop Trials——Comparisons of Arithmetic Mean,Weighted Least Squares Estimates and BLUPs
下载PDF
导出
摘要 针对作物区域试验中的品种均值估计问题 ,根据混合线性模型的一般原理 ,总结和提出多种加权最小二乘估计(WLSE)和最佳线性无偏预测 (BLUP)的方法 ,推导了这些方法的平衡数据计算简式 ;同时 ,利用 14套 2年多点的棉花区试资料和一套 4年多点的棉花品种试验对这些方法的预测效果进行验证比较。结果表明 ,与算术平均值相比 ,以环境内误差方差倒数加权的WLSE估值的预测精度 (包括预测差的大小和品种排名的一致性 )明显不同 ,但其高低因数据而异 ;其他WLSE估值以及BLUP的预测结果差别不大 ,和算术平均值以及相互间的相关系数和秩相关系数均在 0 93以上。 Based on the mixed linear model, several weighted least squares estimates(WLSEs)and best linear unbiased predictors(BLUPs) were summarized and proposed for estimating variety means in regional crop trials, and the corresponding calculating formulae were derived and presented for balanced data The data of 14 rounds of 2-year-multi-location regional cotton trials and a 4-year-multi-location cotton trial were used to compare the predictive efficiencies of arithmetic means, WLSEs and BLUPs The results showed that the predictive differences and variety ranks of the WLSE weighted by the reciprocals of error variances within environments (WLSEe) differed significantly from that of the arithmetic means, but the predictive accuracy of WLSEe increased or decreased irregularly in different trials; the predictive results of other WLSEs and BLUPs were similar to that of the arithmetic means, the correlation coefficients and rank correlation coefficients between them were all above 0 93
出处 《作物学报》 CAS CSCD 北大核心 2003年第6期884-891,共8页 Acta Agronomica Sinica
基金 国家自然科学基金资助项目 (3 0 0 70 43 3 )
关键词 作物品种 区域试验 品种均值 估计模型 算术平均值 加权最小二乘估计 BLUP Regional trial Arithmetic mean Weighted least squares estimate BLUP Prediction
  • 相关文献

参考文献8

  • 1张群远,孔繁玲,杨付新.品种区域试验中算术平均值、BLUP和AMMI估值的精度比较[J].作物学报,2001,27(4):428-433. 被引量:10
  • 2Gauch H G. Statistical Analysis of Regional Yield Trials. New York:Elsevier, 1992.
  • 3Yates F, Cochran W G. The analysis of groups of experiments. Journal of Agricultural Science, 1938,28:556-580.
  • 4Bernardo R. Weighted vs. unweighted mean performance of varieties across environments. Crop Science, 1992,32:490-492.
  • 5Huhn M. Weighted means are unnecessary in cuhivar performance trials. Crop Science, 1997,37:1745-1750.
  • 6Searle S R, Casella G, McCulloch C E. Variance Components. New York:John Wiley & Sons, 1992,19-33.
  • 7Henderson C R. Best linear unbiased estimation and prediction under a selection model. Biometrics, 1975,31 : 423-447.
  • 8Shukla G K. Some statistical aspects of partitioning genotype-environmental components of variability. Heredity, 1972,29 : 237-245.

二级参考文献4

  • 1朱军,遗传模型分析方法,1997年
  • 2Zhu J,TAG,1994年,89卷,160页
  • 3莫惠栋,农业试验统计(第2版),1992年
  • 4王松桂,线性模型的理论及应用,1987年

共引文献9

同被引文献148

引证文献11

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部