期刊文献+

Simplified three-dimensional culture system for long-term expansion of embryonic stem cells 被引量:2

Simplified three-dimensional culture system for long-term expansion of embryonic stem cells
下载PDF
导出
摘要 AIM: To devise a simplified and efficient method for long-term culture and maintenance of embryonic stem cells requiring less frequent passaging. METHODS: Mouse embryonic stem cells(ESCs) labeled with enhanced yellow fluorescent protein were cultured in three-dimensional(3-D) self-assembling scaffolds and compared with traditional two-dimentional(2-D) culture techniques requiring mouse embryonic fibroblast feeder layers or leukemia inhibitory factor. 3-D scaffolds encapsulating ESCs were prepared by mixing ESCs with polyethylene glycol tetra-acrylate(PEG-4-Acr) and thiolfunctionalized dextran(Dex-SH). Distribution of ESCs in 3-D was monitored by confocal microscopy. Viability and proliferation of encapsulated cells during long-term culture were determined by propidium iodide as well as direct cell counts and PrestoB lue(PB) assays. Genetic expression of pluripotency markers(Oct4, Nanog, Klf4, and Sox2) in ESCs grown under 2-D and 3-D cultureconditions was examined by quantitative real-time polymerase chain reaction. Protein expression of selected stemness markers was determined by two different methods, immunofluorescence staining(Oct4 and Nanog) and western blot analysis(Oct4, Nanog, and Klf4). Pluripotency of 3-D scaffold grown ESCs was analyzed by in vivo teratoma assay and in vitro differentiation via embryoid bodies into cells of all three germ layers. RESULTS: Self-assembling scaffolds encapsulating ESCs for 3-D culture without the loss of cell viability were prepared by mixing PEG-4-Acr and Dex-SH(1:1 v/v) to a final concentration of 5%(w/v). Scaffold integrity was dependent on the degree of thiol substitution of Dex-SH and cell concentration. Scaffolds prepared using Dex-SH with 7.5% and 33% thiol substitution and incubated in culture medium maintained their integrity for 11 and 13 d without cells and 22 ± 5 d and 37 ± 5 d with cells, respectively. ESCs formed compact colonies, which progressively increased in size over time due to cell proliferation as determined by confocal microscopy and PB staining. 3-D scaffold cultured ESCs expressed significantly higher levels(P < 0.01) of Oct4, Nanog, and Kl4, showing a 2.8, 3.0 and 1.8 fold increase, respectively, in comparison to 2-D grown cells. A similar increase in the protein expression levels of Oct4, Nanog, and Klf4 was observed in 3-D grown ESCs. However, when 3-D cultured ESCs were subsequently passaged in 2-D culture conditions, the level of these pluripotent markers was reduced to normal levels. 3-D grown ESCs produced teratomas and yielded cells of all three germ layers, expressing brachyury(mesoderm), NCAM(ectoderm), and GATA4(endoderm) markers. Furthermore, these cells differentiated into osteogenic, chondrogenic, myogenic, and neural lineages expressing Col1, Col2, Myog, and Nestin, respectively. CONCLUSION: This novel 3-D culture system demonstrated long-term maintenance of mouse ESCs without the routine passaging and manipulation necessary for traditional 2-D cell propagation. AIM: To devise a simplified and efficient method for long-term culture and maintenance of embryonic stem cells requiring less frequent passaging. METHODS: Mouse embryonic stem cells(ESCs) labeled with enhanced yellow fluorescent protein were cultured in three-dimensional(3-D) self-assembling scaffolds and compared with traditional two-dimentional(2-D) culture techniques requiring mouse embryonic fibroblast feeder layers or leukemia inhibitory factor. 3-D scaffolds encapsulating ESCs were prepared by mixing ESCs with polyethylene glycol tetra-acrylate(PEG-4-Acr) and thiolfunctionalized dextran(Dex-SH). Distribution of ESCs in 3-D was monitored by confocal microscopy. Viability and proliferation of encapsulated cells during long-term culture were determined by propidium iodide as well as direct cell counts and PrestoB lue(PB) assays. Genetic expression of pluripotency markers(Oct4, Nanog, Klf4, and Sox2) in ESCs grown under 2-D and 3-D cultureconditions was examined by quantitative real-time polymerase chain reaction. Protein expression of selected stemness markers was determined by two different methods, immunofluorescence staining(Oct4 and Nanog) and western blot analysis(Oct4, Nanog, and Klf4). Pluripotency of 3-D scaffold grown ESCs was analyzed by in vivo teratoma assay and in vitro differentiation via embryoid bodies into cells of all three germ layers. RESULTS: Self-assembling scaffolds encapsulating ESCs for 3-D culture without the loss of cell viability were prepared by mixing PEG-4-Acr and Dex-SH(1:1 v/v) to a final concentration of 5%(w/v). Scaffold integrity was dependent on the degree of thiol substitution of Dex-SH and cell concentration. Scaffolds prepared using Dex-SH with 7.5% and 33% thiol substitution and incubated in culture medium maintained their integrity for 11 and 13 d without cells and 22 ± 5 d and 37 ± 5 d with cells, respectively. ESCs formed compact colonies, which progressively increased in size over time due to cell proliferation as determined by confocal microscopy and PB staining. 3-D scaffold cultured ESCs expressed significantly higher levels(P < 0.01) of Oct4, Nanog, and Kl4, showing a 2.8, 3.0 and 1.8 fold increase, respectively, in comparison to 2-D grown cells. A similar increase in the protein expression levels of Oct4, Nanog, and Klf4 was observed in 3-D grown ESCs. However, when 3-D cultured ESCs were subsequently passaged in 2-D culture conditions, the level of these pluripotent markers was reduced to normal levels. 3-D grown ESCs produced teratomas and yielded cells of all three germ layers, expressing brachyury(mesoderm), NCAM(ectoderm), and GATA4(endoderm) markers. Furthermore, these cells differentiated into osteogenic, chondrogenic, myogenic, and neural lineages expressing Col1, Col2, Myog, and Nestin, respectively. CONCLUSION: This novel 3-D culture system demonstrated long-term maintenance of mouse ESCs without the routine passaging and manipulation necessary for traditional 2-D cell propagation.
出处 《World Journal of Stem Cells》 SCIE CAS 2015年第7期1064-1077,共14页 世界干细胞杂志(英文版)(电子版)
基金 Oakland University and Oakland University-William Beaumont Institute for Stem Cell and Regenerative Medicine(OU-WB ISCRM)
关键词 THREE-DIMENSIONAL CULTURE PLURIPOTENCY EMBRYONIC s Three-dimensional culture Pluripotency Embryonic s
  • 相关文献

参考文献20

  • 1Jianshu Wei,Jin Han,Yannan Zhao,Yi Cui,Bin Wang,Zhifeng Xiao,Bing Chen,Jianwu Dai.The importance of three-dimensional scaffold structure on stemness maintenance of mouse embryonic stem cells[J]. Biomaterials . 2014
  • 2Amanda-Jayne F. Carr,Matthew J.K. Smart,Conor M. Ramsden,Michael B. Powner,Lyndon da Cruz,Peter J. Coffey.Development of human embryonic stem cell therapies for age-related macular degeneration[J]. Trends in Neurosciences . 2013 (7)
  • 3Aliaksandra Radzisheuskaya,José C.R. Silva.Do all roads lead to Oct4? The emerging concepts of induced pluripotency[J]. Trends in Cell Biology . 2013
  • 4Yongxing Liu,Lyndon F. Charles,Thomas I. Zarembinski,Kalle I. Johnson,Sarah K. Atzet,Robin L. Wesselschmidt,Mark E. Wight,Liisa T. Kuhn.Modified Hyaluronan Hydrogels Support the Maintenance of Mouse Embryonic Stem Cells and Human Induced Pluripotent Stem Cells[J]. Macromol. Biosci. . 2012 (8)
  • 5Hikmet Geckil,Feng Xu,Xiaohui Zhang,SangJun Moon,Utkan Demirci.Engineering hydrogels as extracellular matrix mimics[J]. Nanomedicine . 2010 (3)
  • 6Farshid Guilak,Daniel M. Cohen,Bradley T. Estes,Jeffrey M. Gimble,Wolfgang Liedtke,Christopher S. Chen.Control of Stem Cell Fate by Physical Interactions with the Extracellular Matrix[J]. Cell Stem Cell . 2009 (1)
  • 7Scott A. Zawko,Shalu Suri,Quan Truong,Christine E. Schmidt.Photopatterned anisotropic swelling of dual-crosslinked hyaluronic acid hydrogels[J]. Acta Biomaterialia . 2008 (1)
  • 8Sophie R. Van Tomme,Gert Storm,Wim E. Hennink.In situ gelling hydrogels for pharmaceutical and biomedical applications[J]. International Journal of Pharmaceutics . 2008 (1)
  • 9Chunming Wang,Jinghua Hao,Feng Zhang,Kai Su,Dong-An Wang.RNA extraction from polysaccharide-based cell-laden hydrogel scaffolds[J]. Analytical Biochemistry . 2008 (2)
  • 10Krishanu Saha,Jacob F Pollock,David V Schaffer,Kevin E Healy.Designing synthetic materials to control stem cell phenotype[J]. Current Opinion in Chemical Biology . 2007 (4)

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部