期刊文献+

复半正定矩阵的奇异值不等式

Some inequalities for singular values of complex positive semidefinite matrices
下载PDF
导出
摘要 用Mn表示所有复矩阵组成的集合.对于A∈Mn,σ(A)=(σ1(A),…,σn(A)),其中σ1(A)≥…≥σn(A)是矩阵A的奇异值.本文给出证明:对于任意实数α,A,B∈Mn为半正定矩阵,优化不等式σ(A-|α|B) wlogσ(A+αB)成立,改进和推广了文[5]的结果. Let M_n be the space of n×n complex matrices. For A∈M_n,let σ(A)=(σ_1(A),...,σ_n(A)),where σ_1(A)≥...≥σ_n(A) are the singular values of A.We prove that if A,B∈M_n are positive semidefinite,then σ(A-|α|B)__(wlog)σ(A+αB) hold for any real number α.This sharpens some results due to \.
出处 《纯粹数学与应用数学》 CSCD 2003年第4期324-328,338,共6页 Pure and Applied Mathematics
基金 云南省自然科学基金资助项目(2000A0001-1M).
关键词 复半正定矩阵 优化 奇异值 酉不变范数 positive semidefinite matrix,majorization,singular value,unitarily invariant
  • 相关文献

参考文献5

  • 1Fan K,Hoffman A. Some metricinequalities in the space of matrices[J]. Proc. Am. Math. Soc. , 1995,111~116.
  • 2Marshall A M,Olkin I. Inequalites Theory of Majorization and its Applications[M]. New York:Academic Press, 1979.
  • 3Horn R A,Johnson C R. Matrix Analysis[M]. Combridge University Press. 1985.
  • 4Bo-Ying Wang. Some inequalities for sum and product of positive semidefinite metrices[J]. Linear Algebra and its Applications, 1999,39~49.
  • 5Xing-Zhi Zhan. Singular values of positive semidefinite matrices[J]. SIAM. Matrix. Anal. Appl. , 2000,819~823.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部