期刊文献+

Broken Rotor Bar Fault Detection of Induction Motors Using a Joint Algorithm of Trust Region and Modified Bare-bones Particle Swarm Optimization 被引量:1

Broken Rotor Bar Fault Detection of Induction Motors Using a Joint Algorithm of Trust Region and Modified Bare-bones Particle Swarm Optimization
下载PDF
导出
摘要 A precise detection of the fault feature parameter of motor current is a new research hotspot in the broken rotor bar(BRB) fault diagnosis of induction motors. Discrete Fourier transform(DFT) is the most popular technique in this field, owing to low computation and easy realization. However, its accuracy is often limited by the data window length, spectral leakage, fence e ect, etc. Therefore, a new detection method based on a global optimization algorithm is proposed. First, a BRB fault current model and a residual error function are designed to transform the fault parameter detection problem into a nonlinear least-square problem. Because this optimization problem has a great number of local optima and needs to be resolved rapidly and accurately, a joint algorithm(called TR-MBPSO) based on a modified bare-bones particle swarm optimization(BPSO) and trust region(TR) is subsequently proposed. In the TR-MBPSO, a reinitialization strategy of inactive particle is introduced to the BPSO to enhance the swarm diversity and global search ability. Meanwhile, the TR is combined with the modified BPSO to improve convergence speed and accuracy. It also includes a global convergence analysis, whose result proves that the TR-MBPSO can converge to the global optimum with the probability of 1. Both simulations and experiments are conducted, and the results indicate that the proposed detection method not only has high accuracy of parameter estimation with short-time data window, e.g., the magnitude and frequency precision of the fault-related components reaches 10^(-4), but also overcomes the impacts of spectral leakage and non-integer-period sampling. The proposed research provides a new BRB detection method, which has enough precision to extract the parameters of the fault feature components. A precise detection of the fault feature parameter of motor current is a new research hotspot in the broken rotor bar(BRB) fault diagnosis of induction motors. Discrete Fourier transform(DFT) is the most popular technique in this field, owing to low computation and easy realization. However, its accuracy is often limited by the data window length, spectral leakage, fence e ect, etc. Therefore, a new detection method based on a global optimization algorithm is proposed. First, a BRB fault current model and a residual error function are designed to transform the fault parameter detection problem into a nonlinear least-square problem. Because this optimization problem has a great number of local optima and needs to be resolved rapidly and accurately, a joint algorithm(called TR-MBPSO) based on a modified bare-bones particle swarm optimization(BPSO) and trust region(TR) is subsequently proposed. In the TR-MBPSO, a reinitialization strategy of inactive particle is introduced to the BPSO to enhance the swarm diversity and global search ability. Meanwhile, the TR is combined with the modified BPSO to improve convergence speed and accuracy. It also includes a global convergence analysis, whose result proves that the TR-MBPSO can converge to the global optimum with the probability of 1. Both simulations and experiments are conducted, and the results indicate that the proposed detection method not only has high accuracy of parameter estimation with short-time data window, e.g., the magnitude and frequency precision of the fault-related components reaches 10^(-4), but also overcomes the impacts of spectral leakage and non-integer-period sampling. The proposed research provides a new BRB detection method, which has enough precision to extract the parameters of the fault feature components.
出处 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第1期65-78,共14页 中国机械工程学报(英文版)
基金 Supported by Fundamental Research Funds for the Central Universities(Grant No.2017XKQY032)
关键词 Fault detection Broken rotor BARS Induction motors Bare-bones particle SWARM optimization Trust region Fault detection Broken rotor bars Induction motors Bare-bones particle swarm optimization Trust region
  • 相关文献

参考文献5

二级参考文献55

共引文献171

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部