摘要
The salicylaldehyde salicylhydrazone and its complex of Er(Ⅲ) were synthesized. The formulae K·4H_2O(HL=[C_(14)H_(10)N_2O_3]^(2-), the bivalent form of the salicylaldehyde salicylhydrazone) were determined by elemental analysis and EDTA volumetric analysis. Molar conductance, IR, UV and X-ray power diffraction were carried out for the characterizations of the complex and the ligand. There are two stable five-numbered and six-numbered circles in the complex. The thermal decompositions of the ligand and the complex with the kinetic study are carried out by non-isothermal thermogravimetry. The stages of the decompositions were identified by TG-DTG curve. The non-isothermal kinetic data were analyzed by means of integral and differential methods. The possible reaction mechanism and the kinetic equation were investigated by the corresponding kinetic parameters.The activation energy value of the main step decomposition are also calculated by Kissinger′s method and Ozawa′s method.
The salicylaldehyde salicylhydrazone and its complex of Er(Ⅲ) were synthesized. The formulae K·4H_2O(HL=[C_(14)H_(10)N_2O_3]^(2-), the bivalent form of the salicylaldehyde salicylhydrazone) were determined by elemental analysis and EDTA volumetric analysis. Molar conductance, IR, UV and X-ray power diffraction were carried out for the characterizations of the complex and the ligand. There are two stable five-numbered and six-numbered circles in the complex. The thermal decompositions of the ligand and the complex with the kinetic study are carried out by non-isothermal thermogravimetry. The stages of the decompositions were identified by TG-DTG curve. The non-isothermal kinetic data were analyzed by means of integral and differential methods. The possible reaction mechanism and the kinetic equation were investigated by the corresponding kinetic parameters.The activation energy value of the main step decomposition are also calculated by Kissinger′s method and Ozawa′s method.
基金
EducationOfficeofShaanxiProvince (0 3JK0 85 )