摘要
The multiobjective group decision-making problem under risk is common in reality. This paper focuses on the study about risky multiobjective group decision-making problem where the index value is not certain. We give indexes classifying method and index normalizing formula of this type problem. By building objective function that minimizes general weighted distance from every alternative to the relatively best and worst alternative, the optimal membership degree of every decision-maker to every alternative can be obtained, and by building another objective function that minimizes general weighted distance from the optimal membership degree of every decision-maker to every alternative to the group optimal alternative and the group inferior alternative, the optimal membership degree of every decision-maker to every alternative can be obtained, which are both based on probability theory and fuzzy theory. Aftermost a model is established which collects group preferences. This method provides a new idea and approach for solving multiobjective decision-making problem among uncertain system, which is applicable for practical problem. Finally a case study shows a satisfactory result.
The multiobjective group decision-making problem under risk is common in reality. This paper focuses on the study about risky multiobjective group decision-making problem where the index value is not certain. We give indexes classifying method and index normalizing formula of this type problem. By building objective function that minimizes general weighted distance from every alternative to the relatively best and worst alternative, the optimal membership degree of every decision-maker to every alternative can be obtained, and by building another objective function that minimizes general weighted distance from the optimal membership degree of every decision-maker to every alternative to the group optimal alternative and the group inferior alternative, the optimal membership degree of every decision-maker to every alternative can be obtained, which are both based on probability theory and fuzzy theory. Aftermost a model is established which collects group preferences. This method provides a new idea and approach for solving multiobjective decision-making problem among uncertain system, which is applicable for practical problem. Finally a case study shows a satisfactory result.