摘要
The response of steady-state fluorescence (Fs) to irradiance in apple (Malus pumila Mill. cv. Tengmu No.1/Malus hupehensis Rehd.) leaf increased and decreased at light levels below and above 400 mumol(.)m(-2.)s(-1) photosynthetic photon flux density (PPFD), respectively, while the light-adapted maximal fluorescence (Fm') and minimal fluorescence (Fo') decreased constantly with the increasing PPFD, and the closure of photosystem 11 reaction center (PS 11 RC) increased continuously, reflected by the chlorophyll fluorescence parameter of (Fs-Fo')/(Fm'-Fo'). These facts indicated that decrease of Fs above 400 mumol(.)m(-2.)s(-1) PPFD was not caused by closure of PS 11 RC, but was mainly resulted from the process of light transfer from light-harvesting complex II (LHC II) to PS II RC. In the presence of N- ethylmaleimide (NEM), an inhibitor of photosynthetic state transition, Fs kept on increasing in apple leaf at light levels from 400 to 700 mumol(.)m(-1.)s(-1), which was the photosynthetic saturation irradiance of apple leaves. In addition, Fs still increased at light levels over 700 mumol(.)m(-2.)s(-1) in apple leaf pre-treated with dithiothreitol (DTT), an inhibitor of xanthophyll cycle. These changes showed that state transition and xanthophyll cycle caused a decrease of Fs in apple leaf at light levels below and above the photosynthetic saturation irradiance, respectively. When apple leaf was pre-treated with NEM, the PS II apparent rate of photochemical reaction (P-rate) and photochemical quenching (qP) decreased significantly in the light range of 600-800 mumol(.)m(-2.)s(-1), but the non-photochemical quenching (qN) existed a small increase at 600-800 mumol(.)m(-2.)s(-1) and a decrease above 800 mumol(.)m(-2.)s(-1). These phenomena suggested that state transition was mainly a photochemical and a non-photochemical process in apple leaf responding to light lower and higher than photosynthetic saturation irradiance, respectively.
在低于和高于400 μmol.m-2.s-1的光照下,苹果(Malus pumila Mill. cv. Tengmu No.1/Malus hupehensisRehd.)叶片稳态荧光(Fs)随光强增加而分别呈现升高和降低的变化趋势,但是光适应下的最大荧光(Fm′)和最小荧光(Fo′)在整个光照范围内一直表现为下降,而且更多的光系统Ⅱ(PSⅡ)反应中心(RC)处于关闭状态((Fs-Fo′)/(Fm′-Fo′))。这表明在高于400 μmol.m-2.s-1的光照下,Fs降低并不是PSⅡ反应中心关闭的结果,而主要是光能从PSⅡ聚光天线(LHCⅡ)向PSⅡ RC的传递减少所导致的。在引入状态转换抑制剂NEM的情况下,Fs在400 μmol.m-2.s-1至苹果叶片饱和光强700 μmol.m-2.s-1的范围内继续上升。另外,在叶黄素循环抑制剂DTT预处理下,Fs可在高于700 μmol.m-2.s-1的光照下继续升高。这些变化说明在饱和光强以下和以上的光照下,苹果叶片Fs变化分别受状态转换和叶黄素循环的影响。在NEM预处理下,PSⅡ表观光化学反应速率(P-rate)和光化学猝灭(qP)在600-800 μmol.m-2.s-1光照下显著降低,与此同时,非光化学猝灭(qN)在600-800 μmol.m-2.s-1光照下轻微上升,而在800 μmol.m-2.s-1以上光照下略微下降。这些现象说明状态转换对于苹果叶片在低于饱和光强的光照下主要起光化学作用,在高于饱和光强光照下主要起非光化学?
基金
国家重点基础研究发展规划项目(G1999011700)
国家自然科学基金(39870526)。~~