期刊文献+

Local Bifurcation Analysis of a Delayed Fractional-order Dynamic Model of Dual Congestion Control Algorithms 被引量:6

Local Bifurcation Analysis of a Delayed Fractional-order Dynamic Model of Dual Congestion Control Algorithms
下载PDF
导出
摘要 In this paper, we propose a delayed fractional-order congestion control model which is more accurate than the original integer-order model when depicting the dual congestion control algorithms. The presence of fractional orders requires the use of suitable criteria which usually make the analytical work so harder. Based on the stability theorems on delayed fractionalorder differential equations, we study the issue of the stability and bifurcations for such a model by choosing the communication delay as the bifurcation parameter. By analyzing the associated characteristic equation, some explicit conditions for the local stability of the equilibrium are given for the delayed fractionalorder model of congestion control algorithms. Moreover, the Hopf bifurcation conditions for general delayed fractional-order systems are proposed. The existence of Hopf bifurcations at the equilibrium is established. The critical values of the delay are identified, where the Hopf bifurcations occur and a family of oscillations bifurcate from the equilibrium. Same as the delay, the fractional order normally plays an important role in the dynamics of delayed fractional-order systems. It is found that the critical value of Hopf bifurcations is crucially dependent on the fractional order. Finally, numerical simulations are carried out to illustrate the main results. © 2017 Chinese Association of Automation. In this paper, we propose a delayed fractional-order congestion control model which is more accurate than the original integer-order model when depicting the dual congestion control algorithms. The presence of fractional orders requires the use of suitable criteria which usually make the analytical work so harder. Based on the stability theorems on delayed fractionalorder differential equations, we study the issue of the stability and bifurcations for such a model by choosing the communication delay as the bifurcation parameter. By analyzing the associated characteristic equation, some explicit conditions for the local stability of the equilibrium are given for the delayed fractionalorder model of congestion control algorithms. Moreover, the Hopf bifurcation conditions for general delayed fractional-order systems are proposed. The existence of Hopf bifurcations at the equilibrium is established. The critical values of the delay are identified, where the Hopf bifurcations occur and a family of oscillations bifurcate from the equilibrium. Same as the delay,the fractional order normally plays an important role in the dynamics of delayed fractional-order systems. It is found that the critical value of Hopf bifurcations is crucially dependent on the fractional order. Finally, numerical simulations are carried out to illustrate the main results.
出处 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第2期361-369,共9页 自动化学报(英文版)
基金 supported by National Natural Science Foundation of China(61573194,61374180,61573096) China Postdoctoral Science Foundation Funded Project(2013M530229) China Postdoctoral Science Special Foundation Funded Project(2014T70463) Six Talent Peaks High Level Project of Jiangsu Province(ZNDW-004) Science Foundation of Nanjing University of Posts and Telecommunications(NY213095) Australian Research Council(DP120104986)
关键词 ALGEBRA Bifurcation (mathematics) Congestion control (communication) Convergence of numerical methods Differential equations Stability Congestion control algorithm fractional-order congestion control algorithm model Hopf bifurcation stability
  • 相关文献

同被引文献14

引证文献6

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部