期刊文献+

摩擦材料在无围压和加围压条件下的形变比较 被引量:2

Deformation comparison between confined pressure and non-confined pressure for friction material
下载PDF
导出
摘要 研究铜基粉末冶金摩擦材料在无围压和加围压条件下的动态力学特性及其形变特征。试验在Hopkinson压杆上完成,通过试验发现,材料在无围压、应变率低于1000-1s时,有应变率强化效应;在更高应变率下,材料有损伤软化效应。微观分析可以看到试件上大量的平行滑移裂纹导致了材料破坏,形变是滑移伴随少量的孪晶;裂缝中有大量的碳纤维组织,这些纤维状组织对裂纹的扩展起抑制作用。而材料在加围压下的性能得到了很大的改善,同一应变率下最大应力、屈服极限和动态杨氏模量均有提高。在高应变率时,无论是加围压还是无围压,破碎的硬质颗粒都是长条状的。由此得出推论,球状、细化的硬质颗粒,可提高基体的强度。 The dynamic behavior and deformation properties of Cu-matrix powder metallurgy friction material under impact loading with confined pressure and non-confined pressure is investigated. Quasi-static tests were performed before the dynamic tests in order to make a comparison. The elastic modulus and elastic and plastic Poisson's ratios were measured. Impact tests were conducted on Hopkinson pressure bar, strain rate hardening effect was observed at strain rates under 1000 s^(-1), whereas weakening effect was seen at higher strain rates, It was shown from microscopic analysis that there were a large number of paralleling sliding cracks on the surface that induced material failure. A large amount of carbon fiber tissue was found in cracks, which could resist the development of cracks. The plastic deformation was dominated by sliding accompanying a small amount of twinning. The confined pressure improved the material properties, value of the maximum stress, yield stress and dynamic young's modulus all were increased at the same strain rate, Whatever confined pressure or non-confined pressure, only stripe like hard particles were broken. The experimental result indicates that the fine spheroid shape hard particles embedded in the matrix are responsible for the improved strenth of the material.
出处 《爆炸与冲击》 EI CAS CSCD 北大核心 2004年第2期151-157,共7页 Explosion and Shock Waves
基金 中国工程物理研究院基金项目(421010201)
关键词 摩擦材料 围压条件 固体力学 纤维组织 硬质颗粒 形变观测 损伤软化效应 solid mechanics shock confined pressure fiber tissue harden grain
  • 引文网络
  • 相关文献

参考文献12

  • 1戴雅康.高速列车摩擦制动材料的现状与发展[J].机车车辆工艺,1994(2):1-8. 被引量:29
  • 2Armstrong R W, Zerilli F j. Dislocation aspects of shock-wave and high-strain-rate phenomena[A~. Proceeding of International Conference on Fundamental Issues and Applications of Shock-ave and High Strain-rate Phenomena(EXPLOMET2000)[C]. Albuquerque: [s. n.],2000.
  • 3Bao G, Ramesh K T. Plastic flow of a tungsten-based composite under qusi-static compression[J]. Acta Metal Mater, 1993,41(9):2711-2719.
  • 4WANG Li-li, DONG Xin-long. Positive and negative strain-rate effect for materials with damage and/or phase transformation at high strain rates[A]. Staudhammer K P, Murr L E, Meyers M A, ed. Fundamental Issues and Applications of Shock-wave and High-strain-rate Phenomena[C]. Amsterdam: Elsevier Science Ltd, 2001:193-200.
  • 5Hanmon T G, Ramakrishnan S, Wang E H. Confined concrete subjected to uniaxial monotonic Loading [J]. Journal of Engineering Mechanics, 1998, (2) : 1303-1309.
  • 6Gong J C, Malvern L E. Passively confined tcsts of axial dynamical compressive strength of concrete [J]. Expcrimental Mechanics, 1990(3): 55-59.
  • 7刘芬来 乌云兴.国外高速列车摩擦制动元件的材料及制造工艺[J].车辆工程,1999,(19):36-36.
  • 8Armstrong R W, Zerilli F J. Dislocation aspects of shock-wave and high-strain-rate phenomena[A]. Proceeding of International Conference on Fundamental Issues and Applications of Shock-ave and High Strain-rate Phenomena (EXPLOMET2000)[C]. Albuquerque: [s.n
  • 9Bao G, Ramesh K T. Plastic flow of a tungsten-based composite under qusi-static compression[J]. Acta Metal Mater, 1993,41(9):2711-2719.
  • 10WANG Li-li, DONG Xin-long.Positive and negative strain-rate effect for materials with damage and/or phase transformation at high strain rates[A]. Staudhammer K P, Murr L E, Meyers M A, ed. Fundamental Issues and Applications of Shock-wave and High-strain-

共引文献31

同被引文献23

  • 1黄风雷,王泽平.纯铜—维动态损伤研究[J].固体力学学报,1993,14(4):289-296. 被引量:5
  • 2庄仕明,丰树平,王春彦,孙承纬.高应变率下TC4及TC9钛合金的动态断裂[J].高压物理学报,1995,9(2):96-106. 被引量:10
  • 3Kanel G I, Razorenov S V, Baumung K, et al. Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point[J]. Journal of Applied Physics, 2001,90 (1) : 136-143.
  • 4Daniel J Steinberg, Richard W Sharp Jr. Interpretation of shock-wave data for beryllium and uranium with an elastic-visco-plastie constitutive model[J]. Journal of Applied Physics, 1981,52(8) : 5072-5081.
  • 5Buchar J, Role S Hrebieek. Strain rate dependence of the spall strength of steels[J]. Journal de Physique-4, 1997, 7(3) :951-956.
  • 6Kanel G I, Razorenov S V, Utkin A Y, et al. Spall strength of molybdenum single crystals[J]. Journal of Applied Physics, 1993,74(12) :7162-7165.
  • 7Gilath I, Eliezer S, Dariel M P, et al. Brittle-to-ductile transition in laser-induced spall at ultrahigh strain rate in 6061-T6 alumminum alloy[J]. Appllied Physics Letter, 1988,52(15):1207-1209.
  • 8HUANG Cheng-yi, Subhash G. Influence of lateral confinement on dynamic damage evolution during uniaxial compressive response of brittle solids[J].Journal of the Mechanics and Physics of Solids, 2003,51:1089-1105.
  • 9Candappa D P, Setunge S, Sanjayan J G. Stress versus strain relation of high strength concrete under high lateral confinement[J]. Cement and Concrete Research, 1999(29):1977-1982.
  • 10Ravichandran G, Subhash G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar[J]. Journal of American Ceramic Society, 1994,77(1):263-267.

引证文献2

二级引证文献2

;
使用帮助 返回顶部