期刊文献+

基于语言神经网络的知识获取方法研究及在智能教学系统中的应用 被引量:1

Study of Knowledge Extracting Based on Linguistic Neural Network and Its Application to ITS
原文传递
导出
摘要  提出了一种基于语言神经网络的知识获取方法,该方法利用语言神经元,对具有开区域的连续输入变量,自动产生相应的语言变量输出,讨论了相应的神经网络训练和知识获取方法,所获取的知识以If-Then的规则形式表示,具有简洁、紧凑、不必进一步化简、易于理解等特点,并给出在智能教学系统中获取专家领域知识的应用实例. A new methodology of extracting rules from linguistic neural networks is proposed. A linguistic neural unit, which has the ability to analyze continuous input variables in open districts and produces corresponding linguistic variables, is described. The training method for network with linguistic neural layer is discussed. The rules extracted are represented in concise and comprehensible If-Then forms, and don't need to be simplified further. An example showing how to extract rules automatically from the expert domain knowledge for intelligent tutoring system (ITS) is given.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2004年第2期68-73,115,共7页 Systems Engineering-Theory & Practice
基金 广西民族学院归国留学人员科研启动基金(0098WDX00061)
关键词 神经网络 语言神经元 规则获取 智能教学系统 neural network linguistic neural units extracting rules intelligent tutoring system
  • 相关文献

参考文献6

  • 1[1]Fu L M. Rule generation from neural networks[J]. IEEE Trans Systems. Man and Cybernetics, 1994, 234(8): 1114-1124.
  • 2[2]Towell G G, Shavlik J W. The extraction of refined rules from knowledge-based neural networks[J]. Machine Learning, 1993,13(1):71-101.
  • 3[3]Andrews R, Geva S.Inserting and extracting knowledge from constrained error backpropagation networks[A]. Proc, Sixth Australian Conf, Neural Networks[C], Sydney, Australia, 1995.
  • 4[4]Towell G G, Shavlik J W. Refinement of approximate domain theories by knowledge based neural networks[A]. Proc of AAAI-90[C], Menlo Park: AAAI Press,1990. 861-866.
  • 5[5]Tsukimoto H. Extracting rules from trained neural networks[J]. IEEE Trans on Neural Networks, 2000, 3(2) :377-389.
  • 6[6]Duch W. A new methodology of extraction optimization and application of crisp and fuzzy logical rules[J]. IEEE Trans on Neural Networks, 2001, 3(2):277-306.

同被引文献20

引证文献1

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部