摘要
本文从一个全局渐近稳定性定理出发讨论了Bazykin捕食系统,并在特定参数条件下给出若干内平衡点和一个余维2 BT分支,包括重数为1的多重焦点、余维2尖点和余维3 Bogdanov-Takens奇点(焦点或中心)。最后,结合数值类比,系统经历相应的余维2 Bogdanov-Takens分支。
This paper discusses the Bazykin’s predator-prey system from a globally asymptotically stable theorem, and presents several interior equilibria and a Bogdanov-Takens bifurcation of codimension 2 under certain parameter conditions, including multiple focus of multiplicity one, cusp of codimension 2 and Bogdanov-Takens singularity of codimension 3 (focus or center). Finally, combining numerical simulations, this system undergoes the corresponding codimension 2 Bogdanov-Takens bifurcation.
出处
《应用数学进展》
2021年第5期1689-1701,共13页
Advances in Applied Mathematics