期刊文献+

Bazykin捕食系统的平衡点和余维2 Bogdanov-Takens分支:全局渐近稳定性

Equilibria and Bogdanov-Takens Bifurcation of Codimension 2 of the Bazykin’s Predator-Prey System: Global Asymptotic Stability
下载PDF
导出
摘要 本文从一个全局渐近稳定性定理出发讨论了Bazykin捕食系统,并在特定参数条件下给出若干内平衡点和一个余维2 BT分支,包括重数为1的多重焦点、余维2尖点和余维3 Bogdanov-Takens奇点(焦点或中心)。最后,结合数值类比,系统经历相应的余维2 Bogdanov-Takens分支。 This paper discusses the Bazykin’s predator-prey system from a globally asymptotically stable theorem, and presents several interior equilibria and a Bogdanov-Takens bifurcation of codimension 2 under certain parameter conditions, including multiple focus of multiplicity one, cusp of codimension 2 and Bogdanov-Takens singularity of codimension 3 (focus or center). Finally, combining numerical simulations, this system undergoes the corresponding codimension 2 Bogdanov-Takens bifurcation.
出处 《应用数学进展》 2021年第5期1689-1701,共13页 Advances in Applied Mathematics
  • 相关文献

参考文献2

二级参考文献17

  • 1Helmar Nunes Moreira,Wang Yuquan.Sufficient conditions for the Sal’nikov equation to have at least two limit cycles[J]. Journal of Mathematical Chemistry . 1994 (1)
  • 2Gary W. Harrison.Multiple stable equilibria in a predator-prey system[J]. Bulletin of Mathematical Biology . 1986 (2)
  • 3Alan Hastings.Multiple limit cycles in predator-prey models[J]. Journal of Mathematical Biology . 1981 (1)
  • 4H. I. Freedman.Stability analysis of a predator-prey system with mutual interference and density-dependent death rates[J]. Bulletin of Mathematical Biology . 1979 (1)
  • 5S. B. Hsu.The application of the Poincaré-transform to the Lotka-Volterra model[J]. Journal of Mathematical Biology . 1978 (1)
  • 6Alan Hastings.Global stability of two species systems[J]. Journal of Mathematical Biology . 1977 (4)
  • 7J. Cronin.Some Mathematics of Biological Oscillations. SIAM Review . 1977
  • 8J. Hainzl.Stability and Hopf Bifurcation in a Predator-prey System with Several Parameters.SIAM.J. AppJ. Mathematica Journal . 1988
  • 9Jing Zhujun.Local and Global Bifurcations and Applications in a Predator-prey System with SeveralParameters. Systems Science .
  • 10H.I. Freedman.Graphical Stability, Enrichment, and Pest Control by a Natural Enemy Math. Bioscience . 1976

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部