摘要
In this paper the impact of distinctive structure of antenna with branch correlation for an OFDM (orthogonal frequency division multiplexing)-based system, MC-CDMA (multi-carrier coded-division multiple-access) system, operating over the frequency selective fading environments is studied. For the reason of accordance with the working environments in the real world applications (urban areas) the correlated-Nakagami-m fading is adopted. Furthermore, the performance evaluation with average BER (bit error rate) formulas of MC-CDMA system with MRC (maximal ratio combining) diversity was derived with an alternative method of the complementary error function. The illustrated results are not only discussing the effect that comes from triangular, linear, and circular antenna array constructions, but the factors of branch correlation are also analyzed. Generally, it is known that the more the received branch number is, the more superior system performance of a multiple-access system will become. It is interesting to contrast to the geometric of the antenna array, that is, the little shape changing of the antenna is, the worse inferior system performance arrive at.
In this paper the impact of distinctive structure of antenna with branch correlation for an OFDM (orthogonal frequency division multiplexing)-based system, MC-CDMA (multi-carrier coded-division multiple-access) system, operating over the frequency selective fading environments is studied. For the reason of accordance with the working environments in the real world applications (urban areas) the correlated-Nakagami-m fading is adopted. Furthermore, the performance evaluation with average BER (bit error rate) formulas of MC-CDMA system with MRC (maximal ratio combining) diversity was derived with an alternative method of the complementary error function. The illustrated results are not only discussing the effect that comes from triangular, linear, and circular antenna array constructions, but the factors of branch correlation are also analyzed. Generally, it is known that the more the received branch number is, the more superior system performance of a multiple-access system will become. It is interesting to contrast to the geometric of the antenna array, that is, the little shape changing of the antenna is, the worse inferior system performance arrive at.