摘要
Providing a pretty adequate environment condition between the transmission and the receiver for a WSN (wireless sensor network), in which deployed sensor nodes and fusion center, is investigated in the paper. Moreover, an algorithm promotes the energy efficient, increases the accuracy of sensing data and prolongs the lifetime of sensor nodes deployed over an WSNs is proposed. On the basis of adopting sensor management, which involves sensor movement sequences, sensor location arrangement, lifetime requirement for sensor nodes deploy surveillance environment, and the data fusion center, are addressed too. Simulation results from the lifetime performance for sensor nodes defeated by parameters about the environment around the WSNs are illustrated. Parameters aforementioned are including sensing distance, path loss factor, number bits of a transmitted packet, and interference suffering from the path of data transmission etc. Furthermore, the algorithm of sensor location arrangement is modified for the purpose of improving the lifetime performance in WSNs environments. In addition, simulation results show that the proposed algorithm in this paper is not only definitely to improve the energy efficient sufficiently, but the sensing accuracy and the lifetime performance of the sensor nodes are also prolonged significantly.
Providing a pretty adequate environment condition between the transmission and the receiver for a WSN (wireless sensor network), in which deployed sensor nodes and fusion center, is investigated in the paper. Moreover, an algorithm promotes the energy efficient, increases the accuracy of sensing data and prolongs the lifetime of sensor nodes deployed over an WSNs is proposed. On the basis of adopting sensor management, which involves sensor movement sequences, sensor location arrangement, lifetime requirement for sensor nodes deploy surveillance environment, and the data fusion center, are addressed too. Simulation results from the lifetime performance for sensor nodes defeated by parameters about the environment around the WSNs are illustrated. Parameters aforementioned are including sensing distance, path loss factor, number bits of a transmitted packet, and interference suffering from the path of data transmission etc. Furthermore, the algorithm of sensor location arrangement is modified for the purpose of improving the lifetime performance in WSNs environments. In addition, simulation results show that the proposed algorithm in this paper is not only definitely to improve the energy efficient sufficiently, but the sensing accuracy and the lifetime performance of the sensor nodes are also prolonged significantly.