期刊文献+

Bidding Strategy in Deregulated Power Market Using Differential Evolution Algorithm

Bidding Strategy in Deregulated Power Market Using Differential Evolution Algorithm
下载PDF
导出
摘要 The primary objective of this research article is to introduce Differential Evolution (DE) algorithm for solving bidding strategy in deregulated power market. Suppliers (GENCOs) and consumers (DISCOs) participate in the bidding process in order to maximize the profit of suppliers and benefits of the consumers. Each supplier bids strategically by choosing the bidding coefficients to counter the competitors bidding strategy. Electricity or electric power is traded through bidding in the power exchange. GENCOs sell energy to power exchange and in turn ancillary services to Independent System Operator (ISO). In this paper, Differential Evolution algorithm is proposed for solving bidding strategy problem in operation of power system under deregulated environment. An IEEE 30 bus system with six generators and two large consumers is employed to demonstrate the proposed technique. The results show the adaptability of the proposed method compared with Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Monte Carlo simulation in terms of Market Clearing Price (MCP). The primary objective of this research article is to introduce Differential Evolution (DE) algorithm for solving bidding strategy in deregulated power market. Suppliers (GENCOs) and consumers (DISCOs) participate in the bidding process in order to maximize the profit of suppliers and benefits of the consumers. Each supplier bids strategically by choosing the bidding coefficients to counter the competitors bidding strategy. Electricity or electric power is traded through bidding in the power exchange. GENCOs sell energy to power exchange and in turn ancillary services to Independent System Operator (ISO). In this paper, Differential Evolution algorithm is proposed for solving bidding strategy problem in operation of power system under deregulated environment. An IEEE 30 bus system with six generators and two large consumers is employed to demonstrate the proposed technique. The results show the adaptability of the proposed method compared with Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Monte Carlo simulation in terms of Market Clearing Price (MCP).
出处 《Journal of Power and Energy Engineering》 2015年第11期37-46,共10页 电力能源(英文)
关键词 BIDDING STRATEGY DIFFERENTIAL Evolution Power MARKET MARKET CLEARING PRICE Bidding Strategy Differential Evolution Power market Market Clearing Price
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部