期刊文献+

Techno-Economic Analysis of Power Production by Using Waste Biomass Gasification 被引量:1

Techno-Economic Analysis of Power Production by Using Waste Biomass Gasification
下载PDF
导出
摘要 Energy recovery from waste biomass can have significant impacts on the most pressing development challenges of rural poverty and environmental damages. In this paper, a techno-economic analysis is carried out for electricity generation by using timber and wood waste (T & WW) gasification in Iceland. Different expenses were considered, like capital, installation, engineering, operation and maintenance costs and the interest rate of the investment. Regarding to revenues, they come from of the electricity sale and the fee paid by the Icelandic municipalities for waste collection and disposal. The economic feasibility was conducted based on the economic indicators of net present value (NPV) and discounted payback period (DPP), bringing together three different subgroups based on gasifier capacities, subgroup a: 50 kW, subgroup b: 100 kW and subgroup c: 200 kW. The results show that total cost increases as the implemented power is increased. This indicator varies from 1228.6 k€ for subgroups a to 1334.7 k€ for subgroups b and 1479.5 k€ for subgroups c. It is worth mentioning that NPV is positive for three subgroups and it grows as gasifier scale is extended. NPV is about 122 k€ (111,020 $), 1824 k€ (1,659,840 $) and 4392 k€ (3,996,720 $) for subgroups a, b and c, respectively. Moreover, DPP has an inversely proportional to the installed capacity. It is around 5.5 years (subgroups a), 9.5 months (subgroups b) and 6 months (subgroups c). The obtained results confirm that using small scale waste biomass gasification integrated with power generation could be techno-economically feasible for remote area in Iceland. Energy recovery from waste biomass can have significant impacts on the most pressing development challenges of rural poverty and environmental damages. In this paper, a techno-economic analysis is carried out for electricity generation by using timber and wood waste (T & WW) gasification in Iceland. Different expenses were considered, like capital, installation, engineering, operation and maintenance costs and the interest rate of the investment. Regarding to revenues, they come from of the electricity sale and the fee paid by the Icelandic municipalities for waste collection and disposal. The economic feasibility was conducted based on the economic indicators of net present value (NPV) and discounted payback period (DPP), bringing together three different subgroups based on gasifier capacities, subgroup a: 50 kW, subgroup b: 100 kW and subgroup c: 200 kW. The results show that total cost increases as the implemented power is increased. This indicator varies from 1228.6 k€ for subgroups a to 1334.7 k€ for subgroups b and 1479.5 k€ for subgroups c. It is worth mentioning that NPV is positive for three subgroups and it grows as gasifier scale is extended. NPV is about 122 k€ (111,020 $), 1824 k€ (1,659,840 $) and 4392 k€ (3,996,720 $) for subgroups a, b and c, respectively. Moreover, DPP has an inversely proportional to the installed capacity. It is around 5.5 years (subgroups a), 9.5 months (subgroups b) and 6 months (subgroups c). The obtained results confirm that using small scale waste biomass gasification integrated with power generation could be techno-economically feasible for remote area in Iceland.
作者 Sahar Safarian Runar Unnthorsson Christiaan Richter Sahar Safarian;Runar Unnthorsson;Christiaan Richter(Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Reykjavik, Iceland)
出处 《Journal of Power and Energy Engineering》 2020年第6期1-8,共8页 电力能源(英文)
关键词 Waste Biomass Gasification Techno-Economic Analysis Power Production Waste to Energy Waste Biomass Gasification Techno-Economic Analysis Power Production Waste to Energy
  • 相关文献

参考文献1

共引文献2

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部