摘要
Two semi-empirical approaches for prediction of elastic modulus of biphasic composites have been proposed. Developed relations are for pore free matrix and pore free filler and found to depend on nonlinear contribution of volume fraction of constituents as well as ratio of elastic properties of individual phases. These relations are applied for the calculation of effective elastic modulus mainly for Al2O3-NiAl, SiC-Al, Alumina-Zirconia, Al-Al2O3, W-glass and Flax-Resin composite materials. Theoretical predictions using developed relations are compared with experimental data. It is found that the predicted values of effective elastic modulus using modified relations are quite close to the experimental results.
Two semi-empirical approaches for prediction of elastic modulus of biphasic composites have been proposed. Developed relations are for pore free matrix and pore free filler and found to depend on nonlinear contribution of volume fraction of constituents as well as ratio of elastic properties of individual phases. These relations are applied for the calculation of effective elastic modulus mainly for Al2O3-NiAl, SiC-Al, Alumina-Zirconia, Al-Al2O3, W-glass and Flax-Resin composite materials. Theoretical predictions using developed relations are compared with experimental data. It is found that the predicted values of effective elastic modulus using modified relations are quite close to the experimental results.