摘要
Advanced Glycation End-Products (AGEs), play a crucial part in advancing the process of cellular skin aging and its link to chronological age was re-assessed. AGEs accumulation alters cell structure and function of most types of skin cells, affecting skin’s mechanical and physiological properties, following the molecular transformations. Slowdown AGEs accumulation rate in skin, although a potent anti-aging strategy, is difficult and tricky. The lack of working methods for <span style="white-space:nowrap;"><i>In-Vitro</i></span> and <span style="white-space:nowrap;"><i>In-Vitro</i></span> measuring AGEs level complicates the evaluation and prediction of active ingredients’ ability to affect cellular AGEs accumulation. A two-step <span style="white-space:nowrap;"><i>In-Vitro</i></span> systematic screening method is proposed and three different cosmetic active ingredients were selected for its demonstration, using BSA-Glucose and Collagen-Glucose predicting models. Candidates’ effects on AGEs accumulation were evaluated as standalone, and when formulated in a blend. Additionally, the potency of non-invasive auto-fluorescence in-vivo measurement to detect AGEs levels among subjects of different ages was demonstrated. The results are presented in this work and the potential contribution of the proposed system to assist the desired inhibition of AGEs accumulation in skin is discussed.
Advanced Glycation End-Products (AGEs), play a crucial part in advancing the process of cellular skin aging and its link to chronological age was re-assessed. AGEs accumulation alters cell structure and function of most types of skin cells, affecting skin’s mechanical and physiological properties, following the molecular transformations. Slowdown AGEs accumulation rate in skin, although a potent anti-aging strategy, is difficult and tricky. The lack of working methods for <span style="white-space:nowrap;"><i>In-Vitro</i></span> and <span style="white-space:nowrap;"><i>In-Vitro</i></span> measuring AGEs level complicates the evaluation and prediction of active ingredients’ ability to affect cellular AGEs accumulation. A two-step <span style="white-space:nowrap;"><i>In-Vitro</i></span> systematic screening method is proposed and three different cosmetic active ingredients were selected for its demonstration, using BSA-Glucose and Collagen-Glucose predicting models. Candidates’ effects on AGEs accumulation were evaluated as standalone, and when formulated in a blend. Additionally, the potency of non-invasive auto-fluorescence in-vivo measurement to detect AGEs levels among subjects of different ages was demonstrated. The results are presented in this work and the potential contribution of the proposed system to assist the desired inhibition of AGEs accumulation in skin is discussed.
作者
Dror Cohen
Ze’evi Ma’or
Ya’ara Laor-Costa
Alexandra Blinderman
David Barak
Ron Kohen
Meital Portugal-Cohen
Dror Cohen;Ze’evi Ma’or;Ya’ara Laor-Costa;Alexandra Blinderman;David Barak;Ron Kohen;Meital Portugal-Cohen(Ahava Dead Sea Laboratories, Airport City, Israel;The Dead Sea Laboratory for Skin Biochemistry and Biotechnology, Dead Sea and Arava Science Center, Masada, Israel;Fosun Jinmei (Shanghai) Cosmetics Co., Ltd., Shanghai, China;The Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel)