摘要
We study a general framework for assessing the injury probability corresponding to an input dose quantity. In many applications, the true value of input dose may not be directly measurable. Instead, the input dose is estimated from measurable/controllable quantities via numerical simulations using assumed representative parameter values. We aim at developing a simple modeling framework for accommodating all uncertainties, including the discrepancy between the estimated input dose and the true input dose. We first interpret the widely used logistic dose-injury model as the result of dose propagation uncertainty from input dose to target dose at the active site for injury where the binary outcome is completely determined by the target dose. We specify the symmetric logistic dose-injury function using two shape parameters: the median injury dose and the 10 - 90 percentile width. We relate the two shape parameters of injury function to the mean and standard deviation of the dose propagation uncertainty. We find 1) a larger total uncertainty will spread more the dose-response function, increasing the 10 - 90 percentile width and 2) a systematic over-estimate of the input dose will shift the injury probability toward the right along the estimated input dose. This framework provides a way of revising an established injury model for a particular test population to predict the injury model for a new population with different distributions of parameters that affect the dose propagation and dose estimation. In addition to modeling dose propagation uncertainty, we propose a new 3-parameter model to include the skewness of injury function. The proposed 3-parameter function form is based on shifted log-normal distribution of dose propagation uncertainty and is approximately invariant when other uncertainties are added. The proposed 3-parameter function form provides a framework for extending skewed injury model from a test population to a target population in application.
We study a general framework for assessing the injury probability corresponding to an input dose quantity. In many applications, the true value of input dose may not be directly measurable. Instead, the input dose is estimated from measurable/controllable quantities via numerical simulations using assumed representative parameter values. We aim at developing a simple modeling framework for accommodating all uncertainties, including the discrepancy between the estimated input dose and the true input dose. We first interpret the widely used logistic dose-injury model as the result of dose propagation uncertainty from input dose to target dose at the active site for injury where the binary outcome is completely determined by the target dose. We specify the symmetric logistic dose-injury function using two shape parameters: the median injury dose and the 10 - 90 percentile width. We relate the two shape parameters of injury function to the mean and standard deviation of the dose propagation uncertainty. We find 1) a larger total uncertainty will spread more the dose-response function, increasing the 10 - 90 percentile width and 2) a systematic over-estimate of the input dose will shift the injury probability toward the right along the estimated input dose. This framework provides a way of revising an established injury model for a particular test population to predict the injury model for a new population with different distributions of parameters that affect the dose propagation and dose estimation. In addition to modeling dose propagation uncertainty, we propose a new 3-parameter model to include the skewness of injury function. The proposed 3-parameter function form is based on shifted log-normal distribution of dose propagation uncertainty and is approximately invariant when other uncertainties are added. The proposed 3-parameter function form provides a framework for extending skewed injury model from a test population to a target population in application.