期刊文献+

On Complete Bicubic Fractal Splines

On Complete Bicubic Fractal Splines
下载PDF
导出
摘要 Fractal geometry provides a new insight to the approximation and modelling of experimental data. We give the construction of complete cubic fractal splines from a suitable basis and their error bounds with the original function. These univariate properties are then used to investigate complete bicubic fractal splines over a rectangle Bicubic fractal splines are invariant in all scales and they generalize classical bicubic splines. Finally, for an original function , upper bounds of the error for the complete bicubic fractal splines and derivatives are deduced. The effect of equal and non-equal scaling vectors on complete bicubic fractal splines were illustrated with suitably chosen examples. Fractal geometry provides a new insight to the approximation and modelling of experimental data. We give the construction of complete cubic fractal splines from a suitable basis and their error bounds with the original function. These univariate properties are then used to investigate complete bicubic fractal splines over a rectangle Bicubic fractal splines are invariant in all scales and they generalize classical bicubic splines. Finally, for an original function , upper bounds of the error for the complete bicubic fractal splines and derivatives are deduced. The effect of equal and non-equal scaling vectors on complete bicubic fractal splines were illustrated with suitably chosen examples.
机构地区 不详
出处 《Applied Mathematics》 2010年第3期200-210,共11页 应用数学(英文)
关键词 Fractals ITERATED Function Systems FRACTAL INTERPOLATION FUNCTIONS FRACTAL Splines Surface APPROXIMATION Fractals Iterated Function Systems Fractal Interpolation Functions Fractal Splines Surface Approximation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部