摘要
In this paper, we study the second-order nonlinear differential systems of Liénard-type x˙=1a(x)[ h(y)−F(x) ], y˙=−a(x)g(x). Necessary and sufficient conditions to ensure that all nontrivial solutions are oscillatory are established by using a new nonlinear integral inequality. Our results substantially extend and improve previous results known in the literature.
In this paper, we study the second-order nonlinear differential systems of Liénard-type x˙=1a(x)[ h(y)−F(x) ], y˙=−a(x)g(x). Necessary and sufficient conditions to ensure that all nontrivial solutions are oscillatory are established by using a new nonlinear integral inequality. Our results substantially extend and improve previous results known in the literature.
作者
Hongtao Zhang
Xiaolin Liu
Ping Yan
Hongtao Zhang;Xiaolin Liu;Ping Yan(College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou, China;Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland)