期刊文献+

Representation of an Integer by a Quadratic Form through the Cornacchia Algorithm

Representation of an Integer by a Quadratic Form through the Cornacchia Algorithm
下载PDF
导出
摘要 Cornachia’s algorithm can be adapted to the case of the equation x2+dy2=nand even to the case of ax2+bxy+cy2=n. For the sake of completeness, we have given modalities without proofs (the proof in the case of the equation x2+y2=n). Starting from a quadratic form with two variables f(x,y)=ax2+bxy+cy2and n an integer. We have shown that a primitive positive solution (u,v)of the equation f(x,y)=nis admissible if it is obtained in the following way: we take α modulo n such that f(α,1)≡0modn, u is the first of the remainders of Euclid’s algorithm associated with n and α that is less than 4cn/| D |) (possibly α itself) and the equation f(x,y)=n. has an integer solution u in y. At the end of our work, it also appears that the Cornacchia algorithm is good for the form n=ax2+bxy+cy2if all the primitive positive integer solutions of the equation f(x,y)=nare admissible, i.e. computable by the algorithmic process. Cornachia’s algorithm can be adapted to the case of the equation x2+dy2=nand even to the case of ax2+bxy+cy2=n. For the sake of completeness, we have given modalities without proofs (the proof in the case of the equation x2+y2=n). Starting from a quadratic form with two variables f(x,y)=ax2+bxy+cy2and n an integer. We have shown that a primitive positive solution (u,v)of the equation f(x,y)=nis admissible if it is obtained in the following way: we take α modulo n such that f(α,1)≡0modn, u is the first of the remainders of Euclid’s algorithm associated with n and α that is less than 4cn/| D |) (possibly α itself) and the equation f(x,y)=n. has an integer solution u in y. At the end of our work, it also appears that the Cornacchia algorithm is good for the form n=ax2+bxy+cy2if all the primitive positive integer solutions of the equation f(x,y)=nare admissible, i.e. computable by the algorithmic process.
作者 Moumouni Djassibo Woba Moumouni Djassibo Woba(Training and Research Unit/Sciences and Technology, University of Ouahigouya, Mra, Burkina Faso)
出处 《Applied Mathematics》 2024年第9期614-629,共16页 应用数学(英文)
关键词 Quadratic Form Cornacchia Algorithm Associated Polynomials Euclid’s Algorithm Prime Number Quadratic Form Cornacchia Algorithm Associated Polynomials Euclid’s Algorithm Prime Number
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部