期刊文献+

User Model Clustering

User Model Clustering
下载PDF
导出
摘要 User model which is the representation of information about user is the heart of adaptive systems. It helps adaptive systems to perform adaptation tasks. There are two kinds of adaptations: 1) Individual adaptation regarding to each user;2) Group adaptation focusing on group of users. To support group adaptation, the basic problem which needs to be solved is how to create user groups. This relates to clustering techniques so as to cluster user models because a group is considered as a cluster of similar user models. In this paper we discuss two clustering algorithms: k-means and k-medoids and also propose dissimilarity measures and similarity measures which are applied into different structures (forms) of user models like vector, overlay, and Bayesian network. User model which is the representation of information about user is the heart of adaptive systems. It helps adaptive systems to perform adaptation tasks. There are two kinds of adaptations: 1) Individual adaptation regarding to each user;2) Group adaptation focusing on group of users. To support group adaptation, the basic problem which needs to be solved is how to create user groups. This relates to clustering techniques so as to cluster user models because a group is considered as a cluster of similar user models. In this paper we discuss two clustering algorithms: k-means and k-medoids and also propose dissimilarity measures and similarity measures which are applied into different structures (forms) of user models like vector, overlay, and Bayesian network.
作者 Loc Nguyen
机构地区 University of Science
出处 《Journal of Data Analysis and Information Processing》 2014年第2期41-48,共8页 数据分析和信息处理(英文)
关键词 USER MODEL CLUSTER User Model Cluster
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部