期刊文献+

A New Aware-Context Collaborative Filtering Approach by Applying Multivariate Logistic Regression Model into General User Pattern 被引量:1

A New Aware-Context Collaborative Filtering Approach by Applying Multivariate Logistic Regression Model into General User Pattern
下载PDF
导出
摘要 Traditional collaborative filtering (CF) does not take into account contextual factors such as time, place, companion, environment, etc. which are useful information around users or relevant to recommender application. So, recent aware-context CF takes advantages of such information in order to improve the quality of recommendation. There are three main aware-context approaches: contextual pre-filtering, contextual post-filtering and contextual modeling. Each approach has individual strong points and drawbacks but there is a requirement of steady and fast inference model which supports the aware-context recommendation process. This paper proposes a new approach which discovers multivariate logistic regression model by mining both traditional rating data and contextual data. Logistic model is optimal inference model in response to the binary question “whether or not a user prefers a list of recommendations with regard to contextual condition”. Consequently, such regression model is used as a filter to remove irrelevant items from recommendations. The final list is the best recommendations to be given to users under contextual information. Moreover the searching items space of logistic model is reduced to smaller set of items so-called general user pattern (GUP). GUP supports logistic model to be faster in real-time response. Traditional collaborative filtering (CF) does not take into account contextual factors such as time, place, companion, environment, etc. which are useful information around users or relevant to recommender application. So, recent aware-context CF takes advantages of such information in order to improve the quality of recommendation. There are three main aware-context approaches: contextual pre-filtering, contextual post-filtering and contextual modeling. Each approach has individual strong points and drawbacks but there is a requirement of steady and fast inference model which supports the aware-context recommendation process. This paper proposes a new approach which discovers multivariate logistic regression model by mining both traditional rating data and contextual data. Logistic model is optimal inference model in response to the binary question “whether or not a user prefers a list of recommendations with regard to contextual condition”. Consequently, such regression model is used as a filter to remove irrelevant items from recommendations. The final list is the best recommendations to be given to users under contextual information. Moreover the searching items space of logistic model is reduced to smaller set of items so-called general user pattern (GUP). GUP supports logistic model to be faster in real-time response.
作者 Loc Nguyen Loc Nguyen(Sunflower Soft Company, Ho Chi Minh City, Vietnam)
机构地区 Sunflower Soft Company
出处 《Journal of Data Analysis and Information Processing》 2016年第3期124-131,共8页 数据分析和信息处理(英文)
关键词 Aware-Context Collaborative Filtering Logistic Regression Model Aware-Context Collaborative Filtering Logistic Regression Model
  • 相关文献

同被引文献6

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部