摘要
A method is described for creating a measurable unbalanced gravitational acceleration using a gravitomagnetic field surrounding a superconducting toroid as described by Forward (1962). An experimental Superconducting Magnetic Energy Storage (SMES) toroid configuration of wound superconducting nanowire is proposed to create a measurable acceleration field along the axis of symmetry, providing experimental confirmation of the additive nature of a Lense-Thirring derived gravitomagnetic field. In the present paper, gravitational coupling enhancement of this effect is explored using a high index or high permittivity material, as predicted by Sarfatti (2020) using his modification to Einstein’s General Relativity Field Equations for gravitational coupling in matter.
A method is described for creating a measurable unbalanced gravitational acceleration using a gravitomagnetic field surrounding a superconducting toroid as described by Forward (1962). An experimental Superconducting Magnetic Energy Storage (SMES) toroid configuration of wound superconducting nanowire is proposed to create a measurable acceleration field along the axis of symmetry, providing experimental confirmation of the additive nature of a Lense-Thirring derived gravitomagnetic field. In the present paper, gravitational coupling enhancement of this effect is explored using a high index or high permittivity material, as predicted by Sarfatti (2020) using his modification to Einstein’s General Relativity Field Equations for gravitational coupling in matter.