期刊文献+

Spherically Symmetric Problem of General Relativity for an Elastic Solid Sphere

Spherically Symmetric Problem of General Relativity for an Elastic Solid Sphere
下载PDF
导出
摘要 The paper is devoted to a spherically symmetric problem of General Relativity (GR) for an elastic solid sphere. Originally developed to describe gravitation in continuum (vacuum, gas, fluid and solid) GR does not provide the complete set of equations for solids and, in contrast to the Newton gravitation theory, does not allow us to study the stresses induced by gravitation in solids, because the compatibility equations which are attracted in the Euclidean space for this purpose do not exist in the Riemannian space. To solve the problem within the framework of GR, a special geometry of the Riemannian space induced by gravitation is proposed. According to this geometry, the four-dimensional Riemannian space is assumed to be Euclidean with respect to the space coordinates and Riemannian with respect to the time coordinate. Such interpretation of the Riemannian space in GR allows us to supplement the conservation equations for the energy-momentum tensor with compatibility equations of the theory of elasticity and to arrive to the complete set of equations for stresses. The analytical solution of the Einstein equations for the empty space surrounding the sphere and the numerical solution for the internal space inside the sphere with the proposed geometry are presented and discussed. The paper is devoted to a spherically symmetric problem of General Relativity (GR) for an elastic solid sphere. Originally developed to describe gravitation in continuum (vacuum, gas, fluid and solid) GR does not provide the complete set of equations for solids and, in contrast to the Newton gravitation theory, does not allow us to study the stresses induced by gravitation in solids, because the compatibility equations which are attracted in the Euclidean space for this purpose do not exist in the Riemannian space. To solve the problem within the framework of GR, a special geometry of the Riemannian space induced by gravitation is proposed. According to this geometry, the four-dimensional Riemannian space is assumed to be Euclidean with respect to the space coordinates and Riemannian with respect to the time coordinate. Such interpretation of the Riemannian space in GR allows us to supplement the conservation equations for the energy-momentum tensor with compatibility equations of the theory of elasticity and to arrive to the complete set of equations for stresses. The analytical solution of the Einstein equations for the empty space surrounding the sphere and the numerical solution for the internal space inside the sphere with the proposed geometry are presented and discussed.
作者 Valery V. Vasiliev Leonid V. Fedorov Valery V. Vasiliev;Leonid V. Fedorov(Russian Academy of Sciences, Moscow, Russia)
出处 《Journal of Modern Physics》 CAS 2023年第6期818-832,共15页 现代物理(英文)
关键词 General Relativity Spherically Symmetric Problem Elastic Sphere General Relativity Spherically Symmetric Problem Elastic Sphere
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部