摘要
High pressure and large flow rate small-sized cooling fans are used for servers in data centers and there is a strong demand to increase its performance because of increase of quantity of heat from servers. Contra-rotating rotors have been adopted for some of high pressure and large flow rate cooling fans to meet the demand. The performance curve of the contra-rotating small-sized cooling fan with 40 mm square casing was investigated by an experimental apparatus and its internal flow condition was clarified by the numerical analysis. The fan static pressure of the front rotor was extremely low and it increased significantly at the rear rotor. The uniform flow was achieved at the inlet of the rear rotor because of the special shape of the casing between the front and rear rotors. On the other hand, the tip leakage flow was large enough to influence on the main flow of the test cooling fan by the design specification of high pressure with compact rotor diameter.
High pressure and large flow rate small-sized cooling fans are used for servers in data centers and there is a strong demand to increase its performance because of increase of quantity of heat from servers. Contra-rotating rotors have been adopted for some of high pressure and large flow rate cooling fans to meet the demand. The performance curve of the contra-rotating small-sized cooling fan with 40 mm square casing was investigated by an experimental apparatus and its internal flow condition was clarified by the numerical analysis. The fan static pressure of the front rotor was extremely low and it increased significantly at the rear rotor. The uniform flow was achieved at the inlet of the rear rotor because of the special shape of the casing between the front and rear rotors. On the other hand, the tip leakage flow was large enough to influence on the main flow of the test cooling fan by the design specification of high pressure with compact rotor diameter.