期刊文献+

Simulated Minimum Quadratic Distance Methods Using Grouped Data for Some Bivariate Continuous Models

Simulated Minimum Quadratic Distance Methods Using Grouped Data for Some Bivariate Continuous Models
下载PDF
导出
摘要 Quadratic distance methods based on a special distance which make use of survival functions are developed for inferences for bivariate continuous models using selected points on the nonegative quadrant. A related version which can be viewed as a simulated version is also developed and appears to be suitable for bivariate distributions with no closed form expressions and numerically not tractable but it is easy to simulate from these distributions. The notion of an adaptive basis is introduced and the estimators can be viewed as quasilikelihood estimators using the projected score functions on an adaptive basis and they are closely related to minimum chi-square estimators with random cells which can also be viewed as quasilikeliood estimators using a projected score functions on a special adaptive basis but the elements of such a basis were linearly dependent. A rule for selecting points on the nonnegative quadrant which make use of quasi Monte Carlo (QMC) numbers and two sample quantiles of the two marginal distributions is proposed if complete data is available and like minimum chi-square methods;the quadratic distance methods also offer chi-square statistics which appear to be useful in practice for model testing. Quadratic distance methods based on a special distance which make use of survival functions are developed for inferences for bivariate continuous models using selected points on the nonegative quadrant. A related version which can be viewed as a simulated version is also developed and appears to be suitable for bivariate distributions with no closed form expressions and numerically not tractable but it is easy to simulate from these distributions. The notion of an adaptive basis is introduced and the estimators can be viewed as quasilikelihood estimators using the projected score functions on an adaptive basis and they are closely related to minimum chi-square estimators with random cells which can also be viewed as quasilikeliood estimators using a projected score functions on a special adaptive basis but the elements of such a basis were linearly dependent. A rule for selecting points on the nonnegative quadrant which make use of quasi Monte Carlo (QMC) numbers and two sample quantiles of the two marginal distributions is proposed if complete data is available and like minimum chi-square methods;the quadratic distance methods also offer chi-square statistics which appear to be useful in practice for model testing.
作者 Andrew Luong
机构地区 école d’Actuariat
出处 《Open Journal of Statistics》 2018年第2期362-389,共28页 统计学期刊(英文)
关键词 Projected SCORE Functions Adaptive BASIS Complete BASIS CHI-SQUARE Tests Statistics Random Cells CONTINGENCY Table Projected Score Functions Adaptive Basis Complete Basis Chi-Square Tests Statistics Random Cells Contingency Table
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部