期刊文献+

Using Pearson’s System of Curves to Approximate the Distributions of the Difference between Two Correlated Estimates of Signal-to-Noise Ratios: The Cases of Bivariate Normal and Bivariate Lognormal Distributions

Using Pearson’s System of Curves to Approximate the Distributions of the Difference between Two Correlated Estimates of Signal-to-Noise Ratios: The Cases of Bivariate Normal and Bivariate Lognormal Distributions
下载PDF
导出
摘要 Background: The signal-to-noise ratio (SNR) is recognized as an index of measurements reproducibility. We derive the maximum likelihood estimators of SNR and discuss confidence interval construction on the difference between two correlated SNRs when the readings are from bivariate normal and bivariate lognormal distribution. We use the Pearsons system of curves to approximate the difference between the two estimates and use the bootstrap methods to validate the approximate distributions of the statistic of interest. Methods: The paper uses the delta method to find the first four central moments, and hence the skewness and kurtosis which are important in the determination of the parameters of the Pearsons distribution. Results: The approach is illustrated in two examples;one from veterinary microbiology and food safety data and the other on data from clinical medicine. We derived the four central moments of the target statistics, together with the bootstrap method to evaluate the parameters of Pearsons distribution. The fitted Pearsons curves of Types I and II were recommended based on the available data. The R-codes are also provided to be readily used by the readers. Background: The signal-to-noise ratio (SNR) is recognized as an index of measurements reproducibility. We derive the maximum likelihood estimators of SNR and discuss confidence interval construction on the difference between two correlated SNRs when the readings are from bivariate normal and bivariate lognormal distribution. We use the Pearsons system of curves to approximate the difference between the two estimates and use the bootstrap methods to validate the approximate distributions of the statistic of interest. Methods: The paper uses the delta method to find the first four central moments, and hence the skewness and kurtosis which are important in the determination of the parameters of the Pearsons distribution. Results: The approach is illustrated in two examples;one from veterinary microbiology and food safety data and the other on data from clinical medicine. We derived the four central moments of the target statistics, together with the bootstrap method to evaluate the parameters of Pearsons distribution. The fitted Pearsons curves of Types I and II were recommended based on the available data. The R-codes are also provided to be readily used by the readers.
作者 Mohamed M. Shoukri Mohamed M. Shoukri(Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada)
出处 《Open Journal of Statistics》 2024年第3期207-227,共21页 统计学期刊(英文)
关键词 Signal-to-Noise Ratio Bivariate Distributions Bootstrap Methods Delta Method Pearson System of Curves Signal-to-Noise Ratio Bivariate Distributions Bootstrap Methods Delta Method Pearson System of Curves
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部