期刊文献+

Characterization of the Bacillus subtilis Penicillin-Binding Protein PBP4

Characterization of the Bacillus subtilis Penicillin-Binding Protein PBP4
下载PDF
导出
摘要 Purpose: The PBP4* is a Penicillin Binding Protein belonging to the class C of AmpH type whose function remains poorly understood. This study aimed to evaluate the biophysical and enzymatic properties of the Bacillus subtilis PBP4* to gain insights into its role in the context of bacterial cell wall recycling. Methods: To characterize the PBP4*, the full-length PBP4* and its N-terminal penicillin-binding domain have been produced in Escherichia coli and purified. Results: A comparison of biophysical properties has shown that both recombinant proteins are monomeric in solution and retain the same thermal stability. On the other hand, the D-alanine methyl esterase activity detected with the full-length PBP4* is impeded by the cleavage of the 92 amino acid C-terminal domain. The esterase activity of the full-length PBP4* strates a clear D-stereospecificity. The PBP4* is also active on B. subtilis cell walls bearing teichoic acids, compounds commonly substituted with D-alanine residues. Conclusions: Our results are in agreement with the hypothesis that PBP4* could play a role in recycling cell wall components, as previously suggested. Purpose: The PBP4* is a Penicillin Binding Protein belonging to the class C of AmpH type whose function remains poorly understood. This study aimed to evaluate the biophysical and enzymatic properties of the Bacillus subtilis PBP4* to gain insights into its role in the context of bacterial cell wall recycling. Methods: To characterize the PBP4*, the full-length PBP4* and its N-terminal penicillin-binding domain have been produced in Escherichia coli and purified. Results: A comparison of biophysical properties has shown that both recombinant proteins are monomeric in solution and retain the same thermal stability. On the other hand, the D-alanine methyl esterase activity detected with the full-length PBP4* is impeded by the cleavage of the 92 amino acid C-terminal domain. The esterase activity of the full-length PBP4* strates a clear D-stereospecificity. The PBP4* is also active on B. subtilis cell walls bearing teichoic acids, compounds commonly substituted with D-alanine residues. Conclusions: Our results are in agreement with the hypothesis that PBP4* could play a role in recycling cell wall components, as previously suggested.
出处 《Advances in Microbiology》 2019年第3期164-176,共13页 微生物学(英文)
关键词 B. SUBTILIS PBP4* Class-C PBP D-Stereospecific ESTERASE B. subtilis PBP4* Class-C PBP D-Stereospecific Esterase
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部