摘要
Neural networks have been shown to be pow-erful tools for solving optimization problems. In this paper, we first retrospect Chen’s chaotic neural network and then propose several novel chaotic neural networks. Second, we plot the figures of the state bifurcation and the time evolution of most positive Lyapunov exponent. Third, we apply all of them to search global minima of continuous functions, and respec-tively plot their time evolution figures of most positive Lyapunov exponent and energy func-tion. At last, we make an analysis of the per-formance of these chaotic neural networks.
Neural networks have been shown to be pow-erful tools for solving optimization problems. In this paper, we first retrospect Chen’s chaotic neural network and then propose several novel chaotic neural networks. Second, we plot the figures of the state bifurcation and the time evolution of most positive Lyapunov exponent. Third, we apply all of them to search global minima of continuous functions, and respec-tively plot their time evolution figures of most positive Lyapunov exponent and energy func-tion. At last, we make an analysis of the per-formance of these chaotic neural networks.