期刊文献+

Input power-mechanism relationship for ultrasonic Irradiation: Food and polymer applications 被引量:6

Input power-mechanism relationship for ultrasonic Irradiation: Food and polymer applications
下载PDF
导出
摘要 Mechanisms for interactions between ultrasound waves and materials vary as a function of input power of ultrasound. The objectives of this study were to compare mode of actions for ultrasound waves at different input powers. This study also describes various effects of ultrasound on materials at different input powers with emphasize on food and polymer applications. At low power of ultrasound, the major mechanism is acoustic streaming and at a power above threshold value, the most possible one is acoustic cavitation. Low power of ultrasound is a powerful analytical technique to investigate on physico-chemical properties of both biological and non-biological materials. While at sufficiently high power, it generates shear forces that are able to create different effects. For each pair of medium-acoustic wave, two types of mechanisms, acoustic streaming and cavitation may be occurred simultaneously. Mechanisms for interactions between ultrasound waves and materials vary as a function of input power of ultrasound. The objectives of this study were to compare mode of actions for ultrasound waves at different input powers. This study also describes various effects of ultrasound on materials at different input powers with emphasize on food and polymer applications. At low power of ultrasound, the major mechanism is acoustic streaming and at a power above threshold value, the most possible one is acoustic cavitation. Low power of ultrasound is a powerful analytical technique to investigate on physico-chemical properties of both biological and non-biological materials. While at sufficiently high power, it generates shear forces that are able to create different effects. For each pair of medium-acoustic wave, two types of mechanisms, acoustic streaming and cavitation may be occurred simultaneously.
出处 《Natural Science》 2013年第8期14-22,共9页 自然科学期刊(英文)
关键词 ULTRASOUND Energy MECHANISM Acoustic STREAMING CAVITATION Ultrasound Energy Mechanism Acoustic Streaming Cavitation
  • 相关文献

同被引文献58

引证文献6

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部