期刊文献+

Classifying 3 Moss Species by Deep Learning, Using the “Chopped Picture” Method 被引量:1

Classifying 3 Moss Species by Deep Learning, Using the “Chopped Picture” Method
下载PDF
导出
摘要 Especially in recent years, deep learning has become a very effective tool for object identification. However, in general, the automatic object identification tends not to work well on ambiguous, amorphous objects such as vegetation. In this study, we developed a simple but effective approach to identify ambiguous objects and applied the method to several moss species. The technique called chopped picture method, where teacher images are systematically dissected into numerous small squares. As a result, the model correctly classified 3 moss species and “non-moss” objects in test images with accuracy more than 90%. Using this approach will help progress in computer vision studies for various ambiguous objects. Especially in recent years, deep learning has become a very effective tool for object identification. However, in general, the automatic object identification tends not to work well on ambiguous, amorphous objects such as vegetation. In this study, we developed a simple but effective approach to identify ambiguous objects and applied the method to several moss species. The technique called chopped picture method, where teacher images are systematically dissected into numerous small squares. As a result, the model correctly classified 3 moss species and “non-moss” objects in test images with accuracy more than 90%. Using this approach will help progress in computer vision studies for various ambiguous objects.
出处 《Open Journal of Ecology》 2018年第3期166-173,共8页 生态学期刊(英文)
关键词 REMOTE SENSING Classification Deep Learning OBJECT Identification Remote Sensing Classification Deep Learning Object Identification
  • 相关文献

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部