期刊文献+

High Efficient Synthesis of Enzymatic 2-Ethylhexyl Ferulate at Solvent-Free and Reduced Pressure Evaporation System

下载PDF
导出
摘要 The use of immobilized lipase from Candida antarctica (Novozymò 435) to catalyze ferulic acid of esterification was investigated in this study. The synthesis product was analyzed using HPLC. The results revealed that the major product was 2-ethylhexyl ferulate. Response surface methodology and 3-level-3-factor central composite rotatable design were adopted to evaluate the effects of synthesis variables, including reaction temperature (60℃- 80℃), enzyme amount (500 - 1500 PLU) and reaction time (8 - 24 h) on the percentage molar conversion of 2-ethylhexyl ferulate. The results showed that reaction temperature and reaction time were the most important parameters on percentage molar conversion. Based on ridge max analysis, the optimum conditions for synthesis were: reaction time 23 h, reaction temperature 71℃?and enzyme amount 1422 PLU. The molar conversion of actual experimental values was 98% under optimal conditions. The use of immobilized lipase from Candida antarctica (Novozymò 435) to catalyze ferulic acid of esterification was investigated in this study. The synthesis product was analyzed using HPLC. The results revealed that the major product was 2-ethylhexyl ferulate. Response surface methodology and 3-level-3-factor central composite rotatable design were adopted to evaluate the effects of synthesis variables, including reaction temperature (60℃- 80℃), enzyme amount (500 - 1500 PLU) and reaction time (8 - 24 h) on the percentage molar conversion of 2-ethylhexyl ferulate. The results showed that reaction temperature and reaction time were the most important parameters on percentage molar conversion. Based on ridge max analysis, the optimum conditions for synthesis were: reaction time 23 h, reaction temperature 71℃?and enzyme amount 1422 PLU. The molar conversion of actual experimental values was 98% under optimal conditions.
出处 《Journal of Materials Science and Chemical Engineering》 2015年第6期33-40,共8页 材料科学与化学工程(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部