期刊文献+

Finite Element Modeling of Stress Strain Curve and Micro Stress and Micro Strain Distributions of Titanium Alloys— A Review

Finite Element Modeling of Stress Strain Curve and Micro Stress and Micro Strain Distributions of Titanium Alloys— A Review
下载PDF
导出
摘要 Most of the alloys like titanium, steel, brass, copper, etc., are used in engineering applications like automobile, aero- space, marine etc., consist of two or more phases. If a material consists of two or more phases or components it is very difficult to predict the properties like mechanical and other properties based on simple laws such as rule of mixtures. Titanium alloys are capable of producing different microstructures when it subjected to heat treatments, so much of money and time are squandering to study the effect of microstructure on mechanical properties of titanium alloys. This squandering can be reduced with the help of modeling and optimization techniques. There are many modeling tech- niques like Finite element method, Mat lab, Mathematical modeling etc. are available. But Finite element method is widely used for prediction because of capable of producing distributions of stresses and strains at any different loads. From the literature it is observed that there is a good agreement between the calculated and measured stress strain curves. This review paper describes the effect of volume fraction and grain size of alpha phase on the stress strain curve of the titanium alloys. It also can predict the effect of strength ratio on stress strain curve by using FEM. This informa- tion will be of great use in designing and selecting the titanium alloys for various engineering applications. Most of the alloys like titanium, steel, brass, copper, etc., are used in engineering applications like automobile, aero- space, marine etc., consist of two or more phases. If a material consists of two or more phases or components it is very difficult to predict the properties like mechanical and other properties based on simple laws such as rule of mixtures. Titanium alloys are capable of producing different microstructures when it subjected to heat treatments, so much of money and time are squandering to study the effect of microstructure on mechanical properties of titanium alloys. This squandering can be reduced with the help of modeling and optimization techniques. There are many modeling tech- niques like Finite element method, Mat lab, Mathematical modeling etc. are available. But Finite element method is widely used for prediction because of capable of producing distributions of stresses and strains at any different loads. From the literature it is observed that there is a good agreement between the calculated and measured stress strain curves. This review paper describes the effect of volume fraction and grain size of alpha phase on the stress strain curve of the titanium alloys. It also can predict the effect of strength ratio on stress strain curve by using FEM. This informa- tion will be of great use in designing and selecting the titanium alloys for various engineering applications.
出处 《Journal of Minerals and Materials Characterization and Engineering》 2012年第10期953-960,共8页 矿物质和材料特性和工程(英文)
关键词 TITANIUM Alloys Finite Element Modeling STRESS-STRAIN CURVE Titanium Alloys Finite Element Modeling Stress-Strain Curve
  • 相关文献

参考文献1

二级参考文献2

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部