摘要
The main aim of the paper is to examine the concentration of the longitudinal dispersion phenomenon arising in fluid flow through porous media. These phenomenon yields a partial differential equation namely Burger’s equation, which is solved by mixture of the new integral transform and the homotopy perturbation method under suitable conditions and the standard assumption. This method provides an analytical approximation in a rapidly convergent sequence with in exclusive manner computed terms. Its rapid convergence shows that the method is trustworthy and introduces a significant improvement in solving nonlinear partial differential equations over existing methods. It is concluded that the behaviour of concentration in longitudinal dispersion phenomenon is decreases as distance x is increasing with fixed time t > 0 and slightly increases with time t.
The main aim of the paper is to examine the concentration of the longitudinal dispersion phenomenon arising in fluid flow through porous media. These phenomenon yields a partial differential equation namely Burger’s equation, which is solved by mixture of the new integral transform and the homotopy perturbation method under suitable conditions and the standard assumption. This method provides an analytical approximation in a rapidly convergent sequence with in exclusive manner computed terms. Its rapid convergence shows that the method is trustworthy and introduces a significant improvement in solving nonlinear partial differential equations over existing methods. It is concluded that the behaviour of concentration in longitudinal dispersion phenomenon is decreases as distance x is increasing with fixed time t > 0 and slightly increases with time t.