摘要
To rapidly determine the pollution extent of wastewater, the calibration models were established for deter-mination of Chemical Oxygen Demand and Biological Oxygen Demand in wastewater by partial least squares and near infrared spectrometry of 120 samples. Spectral data preprocessing and outliers’ diagnosis were also discussed. Correlation coefficients of the models were 0.9542 and 0.9652, and the root mean square error of prediction (RMSEP) were 25.24 mg?L-1 and 12.13 mg?L-1 in the predicted range of 28.40~528.0 mg?L-1 and 16.0~305.2 mg?L-1 for Chemical Oxygen Demand and Biological Oxygen Demand, respectively. By statistical significance test, the results of determination were compared with those of stan-dard methods with no significant difference at 0.05 level. The method has been applied to simultaneous de-termination of Chemical Oxygen Demand and Biological Oxygen Demand in wastewater with satisfactory results.
To rapidly determine the pollution extent of wastewater, the calibration models were established for deter-mination of Chemical Oxygen Demand and Biological Oxygen Demand in wastewater by partial least squares and near infrared spectrometry of 120 samples. Spectral data preprocessing and outliers’ diagnosis were also discussed. Correlation coefficients of the models were 0.9542 and 0.9652, and the root mean square error of prediction (RMSEP) were 25.24 mg?L-1 and 12.13 mg?L-1 in the predicted range of 28.40~528.0 mg?L-1 and 16.0~305.2 mg?L-1 for Chemical Oxygen Demand and Biological Oxygen Demand, respectively. By statistical significance test, the results of determination were compared with those of stan-dard methods with no significant difference at 0.05 level. The method has been applied to simultaneous de-termination of Chemical Oxygen Demand and Biological Oxygen Demand in wastewater with satisfactory results.