摘要
The primary objective of this study was to design and size a sustainable sanitation solution for the Ndiebene Gandiol 1 school located in the eponymous commune in northern Senegal. Field investigations led to the collection of wastewater samples. Their analysis revealed specific pollutant loads, including loads of BOD5 3.6966 kgO<sub>2</sub>/day and COD of 12.8775 kgO<sub>2</sub>/day, which were central to the design phase. Following a rigorous assessment of the existing sanitation infrastructure, constructed wetland (CWs) emerged as the most appropriate ecological solution. This system, valued for its ability to effectively remove contaminants, was tailored to the specific needs of the site. Consequently, the final design of the filter extends over 217.16 m<sup>2</sup>, divided into two cells of 108.58 m<sup>2</sup> each, with dimensions of 12.77 m in length and 8.5 m in width. The depth of the filtering medium is approximately 0.60 m, meeting the standards while ensuring maximized purification. Typha, an indigenous and prolific plant known for its purification abilities, was selected as the filtering agent. Concurrently, non-crushed gravel was chosen for its proven filtration capacity. This study is the result of a combination of scientific rigor and design expertise. It provides a holistic view of sanitation for Ndiebene Gandiol. The technical specifications and dimensions of the constructed wetland filter embody an approach that marries indepth analysis and practical application, all aimed at delivering an effective and long-lasting solution to the local sanitation challenges. By integrating precise scientific data with sanitation design expertise, this study delivers a holistic solution for Ndiebene Gandiol. The detailed dimensions and specifications of the constructed wetland filter reflect a methodology that combines meticulous analysis with practical adaptation, aiming to provide an effective and sustainable response to the challenges of rural and school sanitation in the northern region of Senegal.
The primary objective of this study was to design and size a sustainable sanitation solution for the Ndiebene Gandiol 1 school located in the eponymous commune in northern Senegal. Field investigations led to the collection of wastewater samples. Their analysis revealed specific pollutant loads, including loads of BOD5 3.6966 kgO<sub>2</sub>/day and COD of 12.8775 kgO<sub>2</sub>/day, which were central to the design phase. Following a rigorous assessment of the existing sanitation infrastructure, constructed wetland (CWs) emerged as the most appropriate ecological solution. This system, valued for its ability to effectively remove contaminants, was tailored to the specific needs of the site. Consequently, the final design of the filter extends over 217.16 m<sup>2</sup>, divided into two cells of 108.58 m<sup>2</sup> each, with dimensions of 12.77 m in length and 8.5 m in width. The depth of the filtering medium is approximately 0.60 m, meeting the standards while ensuring maximized purification. Typha, an indigenous and prolific plant known for its purification abilities, was selected as the filtering agent. Concurrently, non-crushed gravel was chosen for its proven filtration capacity. This study is the result of a combination of scientific rigor and design expertise. It provides a holistic view of sanitation for Ndiebene Gandiol. The technical specifications and dimensions of the constructed wetland filter embody an approach that marries indepth analysis and practical application, all aimed at delivering an effective and long-lasting solution to the local sanitation challenges. By integrating precise scientific data with sanitation design expertise, this study delivers a holistic solution for Ndiebene Gandiol. The detailed dimensions and specifications of the constructed wetland filter reflect a methodology that combines meticulous analysis with practical adaptation, aiming to provide an effective and sustainable response to the challenges of rural and school sanitation in the northern region of Senegal.
作者
Falilou Coundoul
Abdou Khafor Ndiaye
Abdoulaye Deme
David de la Varga
Falilou Coundoul;Abdou Khafor Ndiaye;Abdoulaye Deme;David de la Varga(Polytechnic Institute of Saint-Louis, Gaston Berger University, Saint-Louis, Senegal;Applied Sciences and Technologies Training and Research Unit, Gaston Berger University, Saint-Louis, Senegal;Laboratory of Chemical-Physical and Chemical Engineering I, University of A Coruñ,a, A Coruñ,a, Spain)